Programmer’s Reference Guide for the

T T S

Programmer’s
Reference Guide
for the
Commodore Plus/4

Programmer’s

Reference Guide
for the |
Commodore Plus/4

Cyndie Merten
Sarah Meyer

r SCOTT, FORESMAN AND COMPANY
| o Glenview, Illinois London

Graphics characters that appear in Table 3-1 and Appendixes C and E are used with permission of Commodore
Business Machines, Inc.

Copyright © 1986 Cyndie Merten and Sarah Meyer.
All Rights Reserved.

Printed in the United States of America.

ISBN 0-673-18249-5

Library of Congress Cataloging-in-Publication Data

Merten, Cyndie.
Programmer’s reference guide for the Commodore
Plus/4.

Includes index.
1. Commodore Plus/4 (Computer)—Programming.
2. BASIC (Computer program language) 1. Meyer, Sarah C.
I1. Title.
QA76.8.C65M47 1986 005.2'65 85-18409
ISBN 0-673-18249-5

23456-RRC-90 89 88 87-86

The following are trademarks of Commodore Business Machines, Inc.: Commodore and the Commodore
logo, Commodore Plus/4, Commodore 16, Commodore 64, VIC-20, VIC-1541, 1531 Datassette, C2N/ 1530
Datassette, Modem/300 Model 1660, MPS-801, Joystick T-1341, VIC-1526, VIC Modem 1600,
Automodem 1650. The following is a registered trademark of Parker Brothers: Boggle.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. Neither the author nor
Scott, Foresman and Company shall have any liability to customer or any other person or entity with
respect to any liability, loss, or damage caused or alleged to be caused directly or indirectly by the programs
contained herein. This includes, but is not limited to, interruption of service, loss of data, loss of business or
anticipatory profits, or consequential damages from the use of the programs.

Preface

The Commodore Plus/4 represents an important advance in home computer
design. The low-priced Plus/4, which Commodore refers to as its productivity
computer, includes significant improvements over the phenomenally popular
Commodore 64 and over any other computer in the home computer class. The
built-in features include an expanded version of BASIC (Version 3.5), a machine-
language monitor, graphic-drawing commands, improved disk- and error-
handling commands, and integrated software that combines three programs:

A word processor _
A spread sheet, with a graph generator linked to it

A file manager

The built-in programs are accessed by a function key.

The Plus/4 has 64 K RAM builtin, 60671 bytes of which are available for use in
BASIC. The Plus/4 also has eight defined function keys that are easy to redefine
with the KEY command. Escape key functions simplify screen editing tasks and
let you create screen windows. The Plus/4 also has simple color settings that let
you select from 121 different hues. In addition, the graphics modes let you use the
drawing commands to draw pictures in high-resolution or multicolor modes. You
can also select split-screen graphics modes that display regular text in a five-line
screen window while the top of the screen is in a graphic mode. Graphic handling
is much easier in BASIC Version 3.5 than itis in the Version 2.0 built into the
Commodore 64.

Although the Plus/4 is superior to the Commodore 64, it does have one
disadvantage: a full library of software is not yet available for the Plus/4. In
addition, the Plus/4 does not have sprite graphics, which are available on the
Commodore 64, and the Plus/4 music features are not as sophisticated, although
music is easier to program.

When Commodore introduced the Plus/4, it was called the Commodore 264.
The name was changed to Plus/4 when Commodore decided to include the
built-in integrated software. At the time of the name change, Commodore also

v

vi Preface

announced the Commodore 16, which is compatible with the Plus/4. The Com-
modore 16 has only 16 K RAM and no built-in software. The two new computers
are compatible, so all Commodore 16 software and peripherals are compatible
with the Plus/4.

About This Book

The Programmer’s Reference Guide for the Commodore Plus/4 is a reference
book for programmers of all levels. The book provides information for both
BASIC and machine language programmers. The authors assume that readers
are familiar with the general operations of the Plus/4 and understand all the
keyboard functions. Neither BASIC nor machine language is taught in this book,
but extensive information is provided on programming in both languages. Pro-
grammers of either BASIC or machine language will find the information they
need to write programs for themselves or for commercial distribution.

The authors have written and tested all the programs in this book. (Please note
that the programs are copyrighted and cannot be used for commercial purposes.)
Cyndie Merten, programmer and mathematician, is a founding member of
Dyadic Software Associates, a group of microcomputer consultants. Sarah
Meyer is a free-lance technical writer who has published another book about the
Plus/4. Together they have published several articles about Commodore comput-
ers. The authors combine their perspectives as programmer and writer to produce
abook that is thorough, technically accurate, and clearly written. Please note that
Commodore Business Machines, Inc. has not been involved in the preparation of
this book. The authors bear responsibility for the accuracy of the material
presented here.

The Programmer’s Reference Guide for the Commodore Plus/4 is divided into
six chapters. The chapters cover BASIC, the built-in software, programming
techniques, machine language, graphics, and peripheral devices. Memory maps
and other technical information are covered in the appendixes.

Chapter 1, The BASIC Language, provides complete descriptions of all 75+
commands, 36 functions, and the system variables that constitute BASIC 3.5. To
simplify looking up BASIC keywords, the elements of BASIC 3.5 are presented
in alphabetical order, with commands, functions, and system variables inter-
mixed. For each keyword, the following information is given:

1. The abbreviation (when there is one).
2. A complete syntax, so you can quickly review the order of parameters.
3. A description of all uses for the command or function.

4. An explanation and range of possible values for each parameter.

5. Examples.

Preface vii

Graphics commands are given additional coverage in Chapter 4, Programming
Graphics. Commands for controlling peripherals are also discussed in Chapter 6,
Using Peripheral Devices. Chapter 3, Some Programming Techniques, also
provides more information on BASIC commands.

The commands for use in the built-in programs are explained in Chapter 2, The
Built-In Software. Chapter 2 is divided into four sections: word processor com-
mands, commands for formatting printed output, spreadsheet commands
(including commands for controlling the graph generator), and file manager
commands. Within each section, commands are explained in alphabetical order.
Examples are given where appropriate.

Chapter 3, Some Programming Techniques, is a collection of sections on
diverse programming topics. Both BASIC and machine-language programming
techniques are discussed. Sections include coverage of the following topics:

Editing the screen

Using the Escape key screen-editing functions
Using screen windows

Using text strings

Redefining the function keys

Using mathematical functions

Programming sound and music

Using arrays

Error handling

Chapter 4, Programming Graphics, explains the operations of the graphics
modes in both BASIC and machine language. Color and screen control, drawing
commands, and animation are among the topics discussed in this chapter. Many
example programs are also provided.

Chapter 5, Machine Language on the Commodore Plus/4, explains the use of
the built-in monitor commands and the application of 6502 machine-language
programming on the Plus/4. This chapter does not teach machine language, but
it does review the instruction set and describe the operatmg system for machine
language programmers of all levels.

Chapter 6, Using Peripheral Devices, describes the operations of the disk drive,
cassette recorder, printers, modem, and joystick in BASIC and machine lan-
guage. Each peripheral, and the commands that control it, is explained in a
separate section. Particular attention is given to disk-handling operations. Disk
operating system (DOS) error messages are explained in Appendix A.

The appendixes are provided to explain additional technical information and
to provide quick reference material. The six appendixes cover error messages for

viii Preface

BASIC and DOS errors, BASIC tokens, character string (CHRS) codes, ASCII
codes, screen display codes, a musical note chart, and memory and register maps.

The Programmer’s Reference Guide for the Commodore Plus/4 also contains
an extensive index that is designed to make finding information in this book
quick and easy. We advise users to consult the index first when seeking specific
information.

The authors have taken great care to ensure accuracy and thoroughness in the
topics that are presented in this book. We cannot guarantee, however, that the
book is error free. We have tried to make the book easy to use and understand,
and we hope you find it helpful and instructive. We welcome your comments and
corrections.

Acknowledgments |

The authors thank Bill Hindorff for reviewing this manual. We are grateful for his
suggestions and constructive criticism.

We thank COMMODORE Magazine for publishing a Plus/4 memory map in
their November/ December 1984 issue and Jim Butterfield for sharing his map in
Transactor (Volume 5, Issue 5).

Also of great assistance in preparing the disk drive section of this manual was
Richard Immers and Gerald G. Neufeld’s book, Inside Commodore DOS.

1 The BASIC Language

This chapter contains information on each of the BASIC commands, functions,
and system reserved variables. Other important details about BASIC are
included in the beginning sections.

The Elements of BASIC

The BASIC built into the Plus/4 is called Version 3.5. This version of BASIC is
considerably more sophisticated than the Version 2.0 built into the Commodore 64.
Version 3.5 contains about twice the number of BASIC commands and is easier-
to use.

This chapter explains each of the 75+ BASIC commands in Version 3.5. In
addition, all BASIC functions are explained. The functions and the commands
are explained together in alphabetical order. The possible parameters of all
commands and functions are discussed. For some commands, such as the draw-
ing commands, you must type a place-holder comma when you use the default
value for a parameter. Be sure to note the requirements for each command.

BASIC lets you perform a large variety of tasks; despite this versatility, BASIC
has very strict syntax rules. You must enter commands according to their formats
and use only legal parameters. When you make a mistake, BASIC usually aborts
the program and displays an error message. Appendix A explains the error

- messages that BASIC prints to help you diagnose your mistakes. The description
of the HELP command explains how to use the HELP key to find errors in
programming lines. ' _

Note the following definitions if you are unsure of some terms:

Keyword A keyword is a word that is reserved as part of BASIC. Keywords
include commands, parts of commands (such as TO, which is part of the FOR
command), operators, function names, and certain reserved variables such as
TI$, a hardware timing value, and ER, an error-diagnosing variable. Keywords

cannot be used as variable names or be embedded in variable names.
. 1

3 The BASIC Language

Function A function is a text string or numeric operation that returns a value.
You can use any of the functions that are part of BASIC, and you can create your
own with the DEF FN command.

Operator We use the term operator to mean a symbol or keyword (such as
AND) that performs a mathematical task or compares two values. The types of
operators available in BASIC are mathematical, comparison, and logical.

Parameter A parameter is a nonkeyword part of a BASIC command or func-
tion. Parameters usually have multiple possible values. You supply the parameter
to define the way you want to use the BASIC command. Some parameters must
be used in a command and many others are optional.

Default Some parameters have a default value, which means that a certain
value is automatically used for that parameter if you do not specify some other
value. To select the default value, you can generally just omit the parameter. In
some commands, such as CIRCLE, you must type a placeholder comma for a
default value if additional parameters follow the default. For example, to accept
the default value for the color source in a CIRCLE command, type a comma in
the color source position. The color source is the first parameter, so the command
could look like this: CIRCLE, 160,100,60,50.

Expression Occasionally we will use the term expression to mean a number or
string that can be a constant, variable, or function that results in an appropriate
value. :

Constants and Variables

Constants are data values that you can use in a BASIC command. Variables are

symbolic names that stand for one or more possible values in a BASIC command.

For example, in the command PRINT “TOTAL:";T, the character string TOTAL

is a constant and T is a variable that stands for the numeric value being printed.
BASIC 3.5 accepts three types of constants and variables:

1. Integer numbers (whole numbers)
2. Floating-point numbers (decimal numbers)

3. Character strings (text)

The Elements of BASIC 3
Data Types

Floating-point numbers can be any type of number, whole or decimal (decimal
numbers are also called real numbers), between 2.93873588E-39 and
1.70141183E+38, the negatives of those numbers, or zero. Floating-point
numbers are stored in RAM using a 5-byte binary format.

Integer numbers can be any whole number between -32767 and 32767. (Note
that you can use larger and smaller values for floating-point numbers.) Numbers
with decimal parts are not accepted; they are truncated and ignored by BASIC.
Integer numbers are stored in RAM in a 5-byte binary format. Numbers in
integer arrays are stored as 2-byte binary numbers.

Character strings, or text strings, can be any characters in quotes, including
numbers, blank spaces, and special symbols. The only keyboard character that
cannot be directly included in a character string is a quotation mark. This is
impossible because a quotation mark is used to begin and end strings. If you try to
type a quotation mark in a string, BASIC assumes the quotation mark signifies
the end of the string; any additional characters are assumed to be a variable name.
For example, the command PRINT "HELLO” MOM prints HELLO 0. BASIC
prints the 0 as the value for what it assumes is the variable MOM. However, a
quotation mark may be used in a string with the help of the CHRS$ function. Note
that a number in quotation marks is treated like any text and has no mathematical
value.

BASIC discriminates between these three data types in variable form by the
way you name the variable. The three variable types are shown in Table 1-1 with
the symbols used to distinguish them.

Floating-point variables can stand for any type of number, whole or decimal,
between 2.93873588E-39 and 1.70141183E+38, the negatives of those numbers,
or zero. Integer variables can stand for any whole number between -32767 and
32767. (Note that you can use larger and smaller numbers for floating-point
variables.) Numbers with decimal parts are not accepted. If you assign a decimal
number to an integer variable, the decimal part of the number is ignored. For

TABLE 1-1. BASIC Variable Types

Floating Point Integer Character String
SyMmBoL None % 3
MEANING Decimal or Whole numbers Characters
whole numbers only in quotes

EXAMPLES X, X5, RX X%, X5%, AGE% S$, R58, NAMES$S

4 The BASIC Language

example, if you assign 1.99 to X%, the value accepted for X% is 1. The decitial
part is truncated, not rounded.

Character string, or text string, variables can stand for atiy characters in
quotes, including numbers, blank spaces, and spemal symbols. The only key-
board character that cannot be directly included in a character string is a
‘quotation mark. A number in quotation marks is treated like any text and has no
mathematical value.

Scientific Notation

Numbers can appear as simple numbers or in scientific notation. In scientific
notation, a number is reduced to its simplest one-whole-digit form. The number
of missing digits is shown in the exponent. The format for representing numbers
in scientific notation is as follows:

mantissa E sign exponent

The mantissa is a floating-point number with one whole digit (e.g., 1.55). The
E, which is the operator for scientific notation, stands for times 10 raised to the
following power. The sign is a negative or positive sign; it indicates whether the
exponent is negative or positive. The exponent is the absolute value of the power
to which the number 10 is raised. This is always a whole number.

Both the mantissa and the exponent can be positive or negative numbers. The
following examples show how the signs of each number affect the value of the
number being represented.

Mantissa Exponent Number Example

Positive Positive Positive 1E+03 = 1000
Positive Negative Positive fraction 1E-03 = .001
Negative Positive Negative -1E+03 = -1000
Negative Negative Negative fraction ~ -1E-03 = -.001

BASIC automatically displays numbers with absolute value smaller than .01 or
higher than 999999999 in scientific notation. If you enter a number outside this
range without typing it in scientific notation, BASIC rounds the number. This
rounding can cause a slightly inaccurate result if the number is used in a calcula-
tion. To avoid this distortion, always enter small or large numbers in scientific

“notation. In any case, BASIC can keep track of only about nine decimal digits in
the mantissa.

The Elements of BASIC 8
Variable Ngmes

Variable names can be one letter followed by other letters or numbers, plus either
% or $ when appropriate. Note, however, that although longer variable names are
accepted, BASIC reads only the first two characters (plus $ or %) in any variable
name. Additional characters are ignored; use them only to make your program
more readable. Because BASIC reads only the first two characters, make sure all
variables in a program have unique names for the first two characters. In other
words, do not use COMPANYS$ and COUNTRYS as variables in the same
program unless you want them to have the same value.

Also be sure that variable names do not contain any BASIC keywords. If this
occurs, the program aborts in a SYNTAX ERROR. For example, do not use a
variable such as WORDEF, which contains the keyword DEF. Keywords cannot
appear in variable names even if they are not the first two characters.

Using Variables in Parameters

Note that in most cases a variable can be used in place of a number or text string in

acommand parameter. The variable must, of course, be the right type of variable.

You can generally use a calculation in place of a number or numeric variable in a

command parameter. For example, any of the following forms is legal:
FORX=1TO5

FORX=1TO A

FOR X =ATO B-1

Arithmetic Operators

Table 1-2 shows the operators that are used for solving mathematical problems.
Note that the multiplication symbol is an *, not an x, and that the exponentiation
symbol is an up arrow.

TaBLE 1-2. Mathematical Operators

t Exponentiation
* Multiplication
/ Division

+ Addition

- Subtraction and negation

(-] The BASIC Language

BASIC solves compound mathematical problems in this order:

First Priority: Exponentiation

Second Priority: Multiplications and divisions
Third Priority: Additions and subtractions
Fourth Priority: ~ Comparison operations
Fifth Priority: Logical NOTs

Sixth Priority: Logical ANDs

Seventh Priority: Logical ORs

When a problem contains more than one calculation from each priority group,
the problems of the same priority are solved left to right.

Parentheses override this priority scheme. BASIC solves parts of a problem
that are enclosed in parentheses before any other parts of a calculation. Multiple
problems within parentheses are solved according to the standard priority order.
Problems can contain multiple sets of parentheses, but you must be sure that the
number of left parentheses equals the number of right parentheses. When paren-
theses are nested within parentheses, the calculations in the innermost set of
parentheses are solved first.

Comparison, or Relational, Operators
BASIC recognizes six symbols that are used to compare two values. These
symbols, which are called either comparison operators or relational operators,

are described in Table 1-3. The comparison operators can be used to compare
constants, variables, numbers, or text strings.

TasBLE 1-3. Comparison Operators

> The left-side value is greater than the right-side value.
< The left-side value is less than the right-side value.

= The values are equal.

<>or>< The values are not equal.

=> or >= The left-side value is equal to or greater than the right-side value.
<= or =< The left-side value is less than or equal to the right-side value.
Logical Operators

You can also use logical operators in calculations and in comparisons of values.
There are three logical operators: AND, OR, and NOT. These operators are also

The Elements of BASIC 7

called Boolean operators. Their role is to check the truth value of two values,
which may be constants, numeric variables, or calculations. A result of 0 is false,
and any other value is considered true.

Numeric values (operands) on either side of a logical operator should be
integer numbers, not floating-point numbers, so that they are between -32767
and 32767. If you use a floating-point number, it is converted to an integer
number. The result of a logical operation is always an integer value.

You can also use the logical operators to AND or OR individual bits (binary
digits) in two operands. You can use NOT to invert individual bits in a single
operand.

The following chart shows how each of the logical operators provides a result
after combining the truth values of two values. A value of -1 is used for a true
result.

-1 AND -1=-1 -IOR-1=-1 NOT-1= 0 -1 XOR-1= 0
-1 AND 0= 0 -1OR 0=-1 NOT 0=-1 -1 XOR 0=-1

0OAND-1= 0 OOR-1=-1 0 XOR -1=-1
O0AND 0= 0 OOR 0= 0 0XOR 0= 0
Logical AND

AND requires both values to be true for the result of the ANDed expression to be
true. Any other combination produces a false result. AND lets you set compound
comparisons in a conditional command such as IF or WHILE. When you join a
compound IF or WHILE command with AND, the result of the compound
comparison is false if one or both of the conditions are false. For example

10 INPUT "AGE, ANNUAL INCOME”; X,Y

20 IFX=>60ANDY<=10000 THEN PRINT “ELIGIBLE”: ELSE PRINT
“INELIGIBLE”

RUN

AGE, ANNUAL INCOME ? 60, 15000

INELIGIBLE

RUN

AGE, ANNUAL INCOME ? 65, 9900

ELIGIBLE

The IF command in the first execution is false because only one IF condition is
true (X is greater than or equal to 60, but Y is not less than or equal to 10000).
Therefore the THEN clause does not execute, and the ELSE clause does execute.
In the second execution of the program, the IF command is true because both the
first AND the second condition are true.

8 The BASIC Language

Logical OR

OR requires only one of the two conditions to be met for the compound expres-
sionto be true. An ORed comparison is false only when both values are false. For
example

10 INPUT “AGE, ANNUAL INCOME";X, Y
20 IF X=>60 OR Y<=10000 THEN PRINT “ELIGIBLE”: ELSE PRINT
“INELIGIBLE”

RUN

AGE, ANNUAL INCOME ? 60, 18000
ELIGIBLE

RUN

AGE, ANNUAL INCOME ? 68, 9900
ELIGIBLE

RUN

AGE, ANNUAL INCOME ? 885, 12000
INELIGIBLE

This modification of the previous program shows the difference between AND
and OR. In the first program, the input 60 and 15000 makes the IF command false
because both conditions must be met before the IF command is true. In the
second program with OR in the IF command, the same input makes the IF
command true because only one of the two conditions has to be met for the whole
IF command to be true. The third execution shows that the only time ORed IF

- commands are false is when NEITHER condition is met.

Logical NOT

NOT is somewhat different from AND and OR. NOT does not compare two
values. Instead, NOT lets you negate any value or comparison operator. For
example, we will add NOT to an IF command that compares a value to see if it is
greater than another value: IF NOT X > Y. Without the NOT, this command
checks to see if X is greater than Y..When NOT is added, this command checks to
see if X is NOT greater than Y; in other words, if X is less than or equal to Y.
When you use NOT, you must type NOT before the values you are comparing.
This may seem awkward because we would say “if X is NOT greater than Y,” but

The Elements of BASIC 9

you must put the NOT just before the value or comparison to negate or the
command will cause a syntax error, which always stops a program. You might
think of NOT as changing the meaning of X > Y to “unless X is greater than Y.”

The following comparisons show how NOT affects comparison operators. The
comparisons on the right are the same as those on the left:

X>Y sameas NOTX<=Y
X<=Y sameas NOTX>Y
X<>Y sameas NOTX=Y
X=Y sameas NOTX<>Y

The last NOT clause contains a double negative: NOT and <> (not equal).
Double negatives, though discouraged in most English applications, are accept-
able in BASIC. But like double negatives in English, double negatives in BASIC
cancel each other, so NOT X <> Y is the same as X = Y. -

This short program uses NOT to make the opposite of the comparison opera-
tor typed in the IF command:

10 INPUT "WHAT'S YOUR AGE"; A
R0 IF NOT A => 21 THEN PRINT “USER IS A MINOR”: ELSE PRINT
IIOKII

RUN

WHAT’S YOUR AGE ? 20
USER IS A MINOR

RUN

WHAT'S YOUR AGE ? 21
OK

The NOT makes the greater-than-or-equal-to symbol mean this: unless A is
greater-than-or-equal-to 21, THEN print USER IS A MINOR. The comparison
is the same as IF A < 21.

Exclusive OR (XOR)

The exclusive OR, which is called XOR, is not a standard logical operator. XOR
is used in machine language (EOR), and it is used in the WAIT command to
invert the comparison of two bits. When both XORed bits have the same value,

10 The BASIC Language

either both 0 or both 1, the result of the comparison is 0. When the two XORed
bits are not equal, the result of the comparison is 1.

Comparing Text Strings

You can use the standard comparison operators to compare text strings. Strings
~ are compared character by character; blanks are considered to be significant
characters. So, for example, “WORD” does not equal “WORD ”. Each charac-
ter is evaluated according to its PET/CBM character set (CHRS$) number (see
Appendix C). This character set gives a number value to every possible character.
“A”(65) is less than “B” (66) is less than “C”(67), and so forth. A blank has a value
of 32, so it is less than any letter, but significant nonetheless. “WORD”is less than
“WORD ” because the blank in “WORD ” gives that string a greater value.
Consider the expression A$=BS$. If all characters in all character positions in
" the two strings are equal, a truth result (-1) is returned. False comparisons
produce a 0 result. The result of a string comparison is always an integer value (0
or -1), so you can use the result in a mathematical calculation. Note, however,
that you cannot use a false result as a divisor because division by zero is illegal.

BASIC Abbreviations

Most BASIC keywords can be abbreviated. These time-saving abbreviations are
shown in Table 1-4. You can use abbreviations to “cheat” on the 88-character-
per-command line limitation. But when a line containing abbreviations is
LISTed, the abbreviations are converted into spelled-out keywords. You cannot
edit and reenter such a line using the screen editor if it is more than 88 characters
when LISTed. Only the first 88 characters will be accepted. Retype the line with
the abbreviations instead.

The table shows some characters in uppercase and others in lowercase. You
will no doubt usually enter programs in uppercase/graphic mode, so abbrevia-
tions will not appear in upper- and lowercase. Instead, the uppercase letters,
which must be typed with the SHIFT key, appear as graphic symbols. We use
uppercase and lowercase letters instead of uppercase and graphic symbols to
make the table easier to read. Just remember to press SHIFT when you type the
letters shown here in uppercase.

Crunching Programs

When you want a program to use less memory, there are several crunching tricks
you can use; they can be found on page 12.

TABLE 1-4. BASIC Abbreviations

The Elements of BASIC

Keyword Abbreviation Keyword Abbreviation
ABS aB GRAPHIC gR
AND aN GSHAPE gS
ASC aS HEADER heA
ATN aT HELP heL
AUTO aU HEXS$ hE
BACKUP bA IF —
BOX bO INPUT —
CHAR chA INPUT# iN
CHRS cH INSTR inS
CIRCLE cl INT —
CLOSE clo JOY jO
CLR cL KEY kE
CMD cM LEFT$ leF
COLLECT colL LEN —
COLOR coL LET 1IE
CONT cO LIST 1I
COPY coP LOAD 10
COS — LOCATE loC
DATA dA LOG —
DEC — LOOP 100
DEF dE MID$ ml
DELETE deL MONITOR mO
DIM dI NEW —
DIRECTORY diR NEXT nE
DLOAD dL NOT nO
DO — ON —
DRAW dR OPEN oP
DSAVE ds OR —
ELSE el PAINT pA
END eN PEEK pE
ERRS eR POKE pO
EXIT ex] POS —
EXP eX PRINT ?
FN — PRINT# pR
FOR fo PUDEF pU
FRE fR RCLR rC
GET gE RDOT rD
GO — READ rE
GOSUB goS REM —
GOTO g0 RENAME reN

11

12 The BASIC Language

TABLE 1-4. BASIC Abbreviations (continued)

Keyword Abbreviation Keyword Abbreviation
RENUMBER renU STEP stE
RESTORE reS STOP sT
RESUME resU STRS stR
RETURN reT SYS sY
RGR rG TAB(, tA
RIGHTS tl TAN —
RLUM rL THEN tH
RND N TO —
RUN rU TRAP tR
SAVE sA . TROFF troF
SCALE SCA TRON trO
SCNCLR sC UNTIL uN
SCRATCH scR USING usl
SGN sG USR uS
SIN sl VAL VA
SOUND sO VERIFY vE
SPC(sP VOL vO
SQR sQ WAIT wA
SSHAPE sS WHILE wH

® Use the lowest possible line numbers. References to large line numbers take up
more memory than those to small line numbers. When you are writing the
program, it is smart to leave gaps between line numbers so you can easily add
lines. Once the program is finished, however, you can use the RENUMBER
command to change all the line numbers to lower, closer-together numbers.

® Put multiple commands on aline. Separate commands on the same line with a
colon. There is no need to put spaces between the commands. Remember,
‘however, that each program line cannot exceed 88 characters in length.

® Delete spaces between characters in the program lines. Although spaces
improve readability, they take up memory. Blanks are never required, so omit
them if you need to.

® Remove REM statements if you need more room. Though useful for docu-
menting a program, they do use up memory.

® Use variables in place of long numbers and calculations that are repeated in a
program.

® Use arrays to hold groups of data. Arrays, which are explaihed elsewhere in
this chapter, handle large groups of data as an organized list. If an array

The Elements of BASIC 13

represents integers that never go outside the range -32767 to 32767, then it
should be defined as an integer array (with the 9% designation).

® Use DEF FN to define frequently used functions.

® Use READ and DATA commands to handle long lists of data whether or not
the data items are related. DATA commands can be placed together at the end
of the program and quickly accessed, data item by data item.

® Write subroutines to handle repeated tasks. Subroutines improve program
organization, and they can save memory by omitting needlessly repeated
commands.

Note: When BASIC searches for a program line to GOTO or GOSUB, it
starts at the beginning of the program and looks sequentially. To speed
execution, place DATA commands at the end of the program so that BASIC
does not have to search through them when looking for a program line. Place
frequently used subroutines near the beginning of the program so they are easy
for BASIC to find.

You can save typing time (though not execution time) by defining function
keys to print commands you use repeatedly. Function keys are easy to define, and
you will save a lot of time if you can just press a key instead of typing the
command. For example, if your program will have a lot of INPUT commands,
define a function key to print INPUT.

Defining a function key to print a command is also useful when you are
experimenting with a graphic-mode drawing. Define a key as one of the graphic
mode commands (e.g., KEY 3,”"GRAPHIC 2,1”) so you can quickly switch to the
drawing mode you want to use. The quickest way to get out of one of the drawing
modes is to commit a syntax error. Just type a letter and press RETURN. A
syntax error automatically cancels the current drawing mode and returns to
text/graphic mode. The drawing in the graphic mode is unaffected by the syntax
error. To get back toit, issue a GRAPHIC command without the ,1, which clears
the graphic mode screen.

BASIC Version 3.8 Commands, Functions, and System Variables

The rest of this chapter explains BASIC commands, functions, and reserved
system variables together in alphabetical order.

ABS Abbr. aB
ABS (number)

ABS is the numeric function that finds the absolute value of the number
enclosed in parentheses. The absolute value of a number is that number without

Parameter:

Examples:

Parameter:

Examples:

14 The BASIC Language

any sign, which means negative signs are removed from negative numbers. The
absolute value of 0 is 0.

any number, positive or negative, or a numeric expression

To display the absolute value for a number, put the ABS functionina PRINT
command.

PRINT ABS(35) Displays the absolute value of 35.
35

PRINT ABS(-35) Displays the absolute value of -35.
35 .

ASC Abbr. aS

ASC (string)

ASC is the numeric function that finds the character-string code for the first
character of the string inside parentheses. ASC is the opposite of the CHR$(x)
function, which finds the character for the character-string code number enclosed

" in parentheses.

any character or key in quotation marks, or a string expression

If you type more than one character in an ASC function, the computer prints
the code for only the first character in the string; all other characters are ignored.

To display the character-string code for a character, put the ASC functionina
PRINT command.

PRINT ASC("M") Displays the CHRS$ code for M.
v

PRINT ASC(””) Displays the CHRS code for the shifted CLEAR
147 key, which is printed as a reversed heart.

PRINT ASC("MAP") Displays the CHR$ code for only the first letter in
idle the string MAP.

ATN Abbr. aT

ATN (number)

ATN is the numeric function that finds the arctangent in radians of the number
enclosed in parentheses. For more information, see the Mathematical Calcula-
tions section of Chapter 3.

Parameter:

Examples:

Parameter:

BASIC Version 3.5 commahds, Functions, and System Variables 18

any numeric expression

PRINT ATN(1) Displays the arctangent of 1 in radians.
785398163

PRINT ATN(-)*180/m Displays the arctangent of -2 in degrees.
-63.4349488

AUTO Abbr. aU
AUTO increment

AUTO prints BASIC program line numbers automatically, which is useful
when you are writing a long program. After you turn on automatic line number-
ing, type the first line in your program (using any line number) and press
RETURN. Thereafter, AUTO prints the next line number as soon as you press
RETURN at the end of each line. The increment between the line numbers is
determined by the number you type in the AUTO command.

increment number

The increment number can be any positive number that does not exceed 63999,
which is the highest possible line number for a BASIC program. Entering a line
number greater than 63999 creates a syntax error.

Turning Off AUTO

Example:

You have to be in immediate mode to use the AUTO command. AUTO prints a
line number every time you press RETURN on a program line containing more
than the line number. Press RETURN on a line containing only the line number
to stop the line numbering. Then issue an AUTO.0 or AUTO with no number to
turn off automatic line numbering.

You can also issue a RUN command instead of AUTO 0 or AUTO, but note
that you must issue one of these commands to turn off automatic line numbering.

AUTO 20 Automatically numbers lines in increments of 20.

50 INPUT "DATE”; D Type any number for the first line number.

70 INPUT "TIME”; T AUTO adds the increment value (20) and prints
the next line number. '

Cautions:

16 The BASIC Language

BACKUP Abbr. bA
BACKUP Ddrive TO Ddrive, ON Uunit

Duphcates an entlre disk in a dual disk drive. BACKUP does not let you copy

just parts of disks or change the names of files or of the disk. Use the COPY
command to duplicate individual files or change file names. This command does
not work with single disk drives such as the 1541.

The disk you are copying is the “master” disk; you are copymg from the master

TO the blank disk.

1.

BACKUP headers the recipient disk before copying files from the master disk.
Since headering a disk erases all the information stored on the disk, do not
BACKUP onto adisk that contains files you want to keep. Useta blank disk or
a disk that contains information you no longer need.

. BACKUP does not affect files on the master disk. However, since BACKUP

does header the recipient disk, double check to be sure the master disk is in the
drive you name as the master drive in the BACKUP command. To avoid
accidentally backing up in the wrong direction, always put the master disk in
drive 0.

. BACKUP copies files indiscriminately—errors and all. For this reason, many

programmers prefer to use the COPY command or a copy utility program to
duplicate disks. If the master disk contains errors, do not use BACKUP.

: D disk drive number TO D disk drive number, U unit number
1.

Drive numbers are either 0 or 1. No other numbers are allowed. The first disk
drive number indicates which drive contains the master disk, whose contents
you are copying. You should always put the master disk in drive 0.

. TO is part of the command and must be included.

3. The second disk drive indicates which drive contains the blank disk onto which

you are copying the information from the master disk. Always put the recipient

- disk in drive 1.

. Unit number is an optional parameter that you should rarely if ever need. Use it

only if you have more than one dual disk drive connected to your computer,
and you are using a device other than unit 8 in the backup procedure. Youcan
precede the unit number with-ON, but ON is not required. The unit number
must be between 8 and 11.

Note: The drive and unit number parameters can be specified with a vari-
able or expression in parentheses.

Examples: BACKUP DO TO D1 Copies all the files on the disk in drive 0 onto

the disk in drive 1.

BASIC Version 3.5 Commands, Functions, and System Variables 17

BACKUP DO TO D1, U9 Copies the disk in drive 0 of unit 9 onto the disk
in drive 1 of unit 9.

BOX Abbr. bO |
BOX color source, corner coordinate, corner coordinate, angle, fill

Draws a rectangular shape in any of the four graphic drawing modes. You
supply the column, row coordinates of two opposite corners. You can include a
parameter to draw the rectangle at a tilted angle, and you can draw the box as an
outline or as a solid shape.

BOX can be executed only in a graphic mode. For more information on the
graphic modes and on the coordinates for the BOX command, see Chapter 4.

Parameter Values Default
Color source 0-3 1
First corner coordinate

Column coordinate 0-319 (high-res modes)

, 0-159 (multicolor modes)

Row coordinate 0-199
Second corner coordinate

Column Coordinate 0-319 (high-res modes) pixel cursor

0-159 (multicolor modes) '

Row coordinate . 0-199
Angle ' 0-360 0 (no angle)
Fill 0 (outline) or 1 (solid) 0

1. The color source indirectly selects the color for the drawing. There are five
color sources, but color source 4 (the border color) cannot be used in drawing
commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color
1 foreground color
2 multicolor mode extra color 1
3 multicolor mode extra color 2

The color source number you include in the BOX command tells the computer
to draw in the current color for that source. For example, if you select 1, the
computer draws the box in the current foreground color. If you want to use a

color other than one of the current source values, you must first use the COLOR
command to change one of the source values. Only sources 1 and 2 can be used to

Examples:

18 The BASIC Language

draw with more than one color on the same screen. Sources 0 and 3 are global

‘colors, which means that changing the colors for these sources affects all shapes

previously drawn with them.

If you want to use the default value (1, the current foreground color), you do
not have to type a number, but you must type acomma before the next parameter.

2. The first set of coordinates names the location of one corner of the box. The
second set names the location of the opposite corner of the box. The second set of
coordinates can be omitted. They will default to the pixel cursor. If you omit the
coordinates, type one comma instead. These are the only coordinates you give.

You can name either of the opposite sets of corners, and you can enter them in
any order (i.e., you do not have to enter the top corner first). If you name corners
with the same row or column coordinate, you will draw a line instead of a
rectangle.

3. After the box is drawn, the pixel cursor is at the location of the second set of
coordinates.

4. You can draw the box tilted at any angle from 0 to 360. For example, a
45-degree angle draws a diamond shape. The default value is 0, no tilting. The
tilting is done after the box is calculated. Therefore, the corners will not be at the
specified coordinates. If you omit this parameter and use the Fill parameter, you
must type a comma in place of the angle parameter.

5. You can draw the box as an outline or as a solid block. The default is 0,
which draws an outline. If you want to draw a solid block, select I as the value for
this parameter. No other values are legal. Since this is the last parameter, you do
not need to type a comma to take its place if you do not use this parameter.

BOX, 60,50, 240,150 Draws a rectangle in outline.

BOX, 80,50, 150,130, 45, 1 Draws a solid rectangle tilted at 45
degrees.

10 GRAPHICR,1 Enters split-screen high-resolution mode.

20 COLOR 1,54 Changes the color of source 1, thereby

indirectly changing the color used to
' draw the boxes.
30 FOR A=0 TO 360 STEP 10 Sets up a loop to increment the value of
the angle parameter in the BOX
‘ command.
40 BOX, 120,50, 200,100, A Draws a rectangle at the angle of A.
50 NEXT

CHAR Abbr. chA
CHAR color source, column coordinate, row coordinate, string, reverse mode

Displays a message at a specified screen location in any text or graphic mode.
You give the column and row coordinates of the message in the CHAR com-
mand. You can also print the message in reversed-image mode.

BASIC Version 3.5 Commands, Functions, and System Variables 19

CHAR is similar to the text-printing capabilities of PRINT, but CHAR also
lets you easily position the message on the screen. In addition, CHAR can display
messages in graphic modes, but PRINT cannot.

CHAR lets you print on top of, above, or below other messages. Because you
can position each CHAR message, you can place messages anywhere in relation
to each other.

CHAR has some slightly different features in the text and graphic modes.
When you use CHAR in‘a text mode only, you can print in flashing mode, and
you can include color changes and other special key commands that you can use
in PRINT commands.

Parameter Values Default
Color source 0-3 ' 1
Column coordinate 0-39

Row coordinate 0-24

Message String expression

Reverse mode Oorl 0 (off)

1. The color source indirectly selects the color for the drawing. There are five
color sources, but color source 4 (the border color) cannot be used with drawing
commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color (default value)
2 multicolor mode extra color 1
3

multicolor mode extra color 2

The color source number you include in the CHAR command tells the com-
puter to use the current color for that source to print the message. For example, if
you select 1, the computer prints the message in the current foreground color. If
you want to use a color other than one of the current source values, you must first
use the COLOR command to change one of the source values. Only sources 1 and
2 can be used to draw with more than one color on the same screen. Sources 0 and
3 are global (whole screen) colors.

If you want to use the default value (1, the current foreground color), you do
not have to type a number, but you must type a comma before the next parameter.

2. Even when you are displaying a message in a graphic mode, use the standard
text column (0-39) and row (0-24) numbers. You do not place CHAR messages
with the graphic mode 320-by-200 coordinates because you are placing whole
letters, not small dots. Be careful; this can be confusing.

3. The message must be in quotes, just as a PRINT command message You

Examples:

20 The BASIC Language

can also use a text-string variable as the message parameter. You can concatenate
strings to the message by adding a plus sign and the string. For example:
CHAR,2,2,"HELLO, "+N$+” HOW ARE YOU".

4. When you are using CHAR in a graphic mode, add a | as the final
parameter when you want to display the message in reversed image. The default is
0, no reversed image.

When you are using CHAR in a text mode, do not use the Reversed Mode
parameter. If you want to display the CHAR message in reversed image, use the

'CONTROL and RVS ON keys inside the quotes, just as you would in a PRINT

command. This method does NOT work in a graphic mode.

When you are using CHAR in a text mode, you can use flashing mode and
change character color by pressing CONTROL and FLASH ON, and CON-
TROL or & and the color key inside the quotes, just as you would in.a PRINT
command. You cannot use flashing mode in a graphic mode, and you cannot use
this method to change foreground color in a graphic mode.

You can include special key commands such-as the CLEAR key in a CHAR
command in a text mode but not in a graphic mode. If you include a special key
symbol in a graphic mode CHAR command, the computer prints the key’s
graphic symbol, but does not execute the key command. For example, if you
include a CLEAR key inside the CHAR quotes in a graphic mode, the computer
does not clear the screen, but it does print the heart symbol that stands for the
CLEAR key in quote mode.

If you use the CHAR command in a split screen mode, the message will be
printed on the graphic screen, not on the text screen. Even if the coordinates
indicate that the message should be placed on the text area of the screen (bottom
five lines), it will be plotted on the (unseen) graphic screen instead.

10 GRAPHIC 1,1

20 CIRCLE, 160,100, 60,50,,,,120

30 CHAR, 16,17, "ISOSCELES",1 Displays the message
ISOSCELES at column 16, row
17 in reverse.

40 CHAR, 16,18 "TRIANGLE” Displays TRIANGLE at column
NEW 16, row 18.
10 GRAPHIC 0,1 Switches to text/graphic mode.

20 INPUT "WHAT’'S YOUR NAME"; A$
30 CHAR, 10,0,"HELLO, “+A$

CHRS Abbr. cH
CHRS (number)

Finds the keyboard definition represented by the character code in paren-
theses. Each key on the keyboard—including key combinations such as SHIFT

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 21

and CLEAR—has a unique character-string value that can be called by its CHR$
code. You can use CHRS values to do anything to the screen output that you can
do by pressing a key, such as changing character colors, turning on reversed-
image mode, or deleting a character.

Printing the CHRS value to the screen has the same effect as pressing the key.
For example, PRINT CHRS$(77) is the same as PRINT “M”. This feature of
CHRS is especially useful when you want to defer the “pressing” of a key. For
example, in a BASIC program the only way to print a message that contains a
quotation mark is to use the CHRS code for the quotation mark:

PRINT “IBM’S MOTTO IS “;CHR$(34);"THINK”; CHR$(34)
IBM’S MOTTO IS “THINK"”

If you actually press the quotation mark key when you type the line, the
quotation mark opens or closes quote mode:

PRINT “IBM’S MOTTO IS “THINK"”
IBM’S MOTTO IS O

In the second PRINT command example, the computer assumes the quote
before THINK turns off quote mode. The computer also assumes that THINK is
avariable name, which is why the 0 is printed. The only way to print the quotation
mark as a character is to use its character code in a CHRS function.

The CHRS function is frequently used in function-key definitions to print a
quotation mark or “press” a RETURN key at the end of the key definition.

Appendix C lists all the CHRS values. Appendix D contains the standard
ASCII codes that are used by many computers for your reference. To find a
CHRS value, you can use the ASC function, which finds the code for any key.

CHRS codes are used in I/ O to devices other than the screen as well. The
printable characters are generally the same, but the control functions will be
different with a printer, for example, than with the screen.

PRINT CHR$(28); A; CHR$(129); B Changes the character color to
red, prints the value for A,
changes the character color to
orange, and prints B.

CIRCLE Abbr. cl
CIRCLE color source, center coordinates, x radius, y radius, start arc, end
arc, angle, increment

This graphic mode command draws circles as well as a variety of other shapes.
CIRCLE draws curved shapes such as arcs and ovals. CIRCLE also draws any

22 The BASIC Language

polygon with regular sides. For example, you can use CIRCLE to draw an
_ isosceles triangle. ‘

You can draw CIRCLE shapes tilted at any angle. If you want to draw solid
shapes, you must use the PAINT command to fill in the CIRCLE outline. Unlike
the BOX command, CIRCLE has no parameter for drawing a solid shape. See
Chapter 4 for more information on CIRCLE coordinates.

Parameter - Values Default
Color source 0-3 1
Center coordinates Current pixel-cursor location

Column coordinate
High-res modes 0-319

Multicolor 0-159

Row coordinate 0-199
Column radius

High-res modes 0-319

Multicolor modes 0-159
Row radius 0-199 Column radius value
Arc starting angle ~ 0-360 0
Arc ending angle 0-360 360
Angle of tilt ' 0-360 0
Segment size 0-255 2

1. The color source indirectly selects the color for the drawing. There are five
color sources, but color source 4 (the border color) cannot be used in drawing
commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color
1 foreground color
2 multicolor mode extra color 1

3 multicolor mode extra color 2

The color source number you include in the CIRCLE command tells the
computer to draw in the current color for that source. For example, if you select
1, the computer draws the shape in the current foreground color. If you want to
use a color other than one of the current source values, you must first use the
COLOR command to change one of the source values. Only sources 1 and 2 can
be used to draw with more than one color on the same screen. Sources 0 and 3 are
global (whole screen) colors.

If you want to use the default value (1, the current foreground color), you do
not have to type a number, but you must type acomma before the next parameter.

Examples:

BASIC Version 3.5 Commands, Functions, and System Variables a3

2. The first coordinates name the center of the shape. The default center is the
current location of the pixel cursor.

3. Horizontal radius is the distance from the center of the shape to the left and
right sides of the shape.

4. Vertical radius is the distance from the center of the shape to the top and
bottom of the shape. Because vertical dots on the high-resolution graphic screen
are slightly farther apart than horizontal dots are, when the vertical and horizon-
tal radii have the same value, the shape drawn is an oval, not a circle. To draw a
circle, the vertical radius must be scaled to the horizontal radius (e.g., 50 horizon-
tal, 47 vertical). For multicolor coordinates, 25 horizontal is about 47 vertical.

5. Use the starting angle only when you want to draw an arc. Zero degrees is at
the top of the screen; 180 is at the bottom; 90 is to the right; and 270 is to the left.

6. The ending angle for an arc defaults to 360 if not specified.

7. Youcandraw ashape tilted at an angle from 0 to 360 degrees. The default is
0, which is no tilt.

8. You choose the shape of the CIRCLE drawing by choosing the number of
degrees between the segments in the drawing. The default number of degrees
between shape segments is 2 degrees, which draws a circle.

When you draw a circle on the screen, you are actually drawing a 180-sided
polygon (360 divided by 2, the default segment value). The larger the increment of
degrees between segments, the more angular the drawing. For example, a seg-
ment value of 120 draws a triangle, not a circle.

To draw a polygon with the CIRCLE command, divide 360 (the total number
of degrees in a real circle) by the number of sides you want the shape to have. For
example, to draw a hexagon, divide 360 by 6. Then use the result, 60, as the
segment parameter.

Note: Although the segment-size parameter can have a value of up to 255, any
value between 180 and 255 draws a straight line. '

10 GRAPHIC 2,1
20 CIRCLE, 140,80, 90,80, 180,320 Draws an arc.

30 CIRCLE, 160,100, 60,50,,,,90 Draws a diamond.

40 CIRCLE, 160,100, 60,50,,90,120 Draws a triangle rotated
90 degrees.

50 CIRCLE, 160,75, 72,60 Draws a circle.

CLOSE Abbr. clO

CLOSE file number

Closes access to a peripheral device or a data file on tape or disk. CLOSE is
paired with the OPEN command, which gives access to a data file or peripheral
device. You must CLOSE the file or device with the same logical file number you
used to OPEN it.

Be sure to CLOSE files and devices when you finish accessing them; leaving

Parameter:

Example:

Parameters:

Examples:

24 The BASIC Language

them OPEN leads to errors. Note that you can have only 10 files OPENed at a
time.

logical file number

The logical file number must be the same number you used to OPEN the file.
The logical file number has no relation to the file itself; you can use any number
between 1 and 255 as long as you use the same number in commands, such as
OPEN and CLOSE, that refer to the file.

10 OPEN 4,4,7 Opens access to the printer.

20 INPUT X$,Y$

30 PRINT #4,X$,Y$ Prints the values input for X$ and YS$.
40 CLOSE 4 Closes access to the printer.

CLR Abbr. cL

Clears the values of all variables without otherwise affecting the current
program. All numeric variables are reset to zero, and all text-string variables are

- reset to a null string.

The CLR command is automatically executed when you issue a NEW or RUN
command. CLR is also executed when you edit a program, which is why you
cannot use CONT to resume program execution after you edit the program.

CMD Abbr. cM
CMD file number, output list

Interrupts the normal flow of output to the screen and sends the output to a
different device, such as the printer or a data file. The device or file must first be
accessed by an OPEN command.

logical file number, list of output items

1. The logical file number must be the same number you used in the OPEN
command to access the file.

2. The list of output items is optional. It can include numeric and string expres-
sions separated with commas or semicolons, just as a PRINT command.

10 OPEN 4,4 Opens access to the printer.
20 CMD 4,”THIS IS MY PROGRAM” Directs output to printer and
_ prints a heading.
30 LIST ~~ Lists program to printer under
heading. ,

Parameters:

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 28

40 PRINT# 4:CLOSE 4 Turns off the CMD command
and closes access to the printer.

The following sequence can be used in immediate mode to LIST the current
program to the printer:

OPEN4,4:CMD4:LIST
PRINT#4:CLOSE4

COLLECT Abbr. colL
COLLECT Ddrive, ON Uunit

Cleans up a disk by clearing files that were improperly closed and are inacces-
sible. COLLECT removes improperly closed files from a disk and its directory so
you can store files in disk space that was rendered unusable.

Note: Never use the COLLECT command on disks that contain information

written with direct-access commands (see Chapter 6).

drive number, U unit number

1. Drive numbers are either 0 or 1. No other numbers are allowed.

2. Unit number is an optional parameter. Use it only if you have more than one
disk drive connected to your computer, and you are using a device other than unit
8 inthe COLLECT procedure. You must precede the unit number with U, and the
unit number must be between 8 and 11. You can type ON before U, but ON is not
required.

Note: The drive and unit number parameters can be specified with a variable
or expression in parentheses.

COLLECT DO Gets rid of all inaccessible files on drive 0.

COLOR Abbr. coL
COLOR color source, color, luminance

Lets you change the color of the screen, the characters, the border, and the
multicolor sources. You can choose any of the 16 basic colors, and one of 8 shades
of any color except black, which has no shades.

The COLOR command lets you indirectly choose the color to be used in
drawing commands. Drawing commands such as CIRCLE do not have parame-
ters for selecting color. You must first change the color with a COLOR command.

You can change character color with the color keys on the keyboard, which are
pressed with the @ or CONTROL keys. This method of selecting a character
color has two shortcomings: you cannot select a luminance level, and the color
change does not affect the value in the foreground-color source (source 1). This

26 The BASIC Language

means that although the new color affects the characters you type, it does not
change the color of the drawings you do in graphic modes.

Parameter Values Default

Screen color source number ' 0-4 None

Color number 1-16 None
Luminance value 0-7 7 (lightest shade)

1. There are five color sources whose color you can change with the COLOR
command:

screen background color

foreground color

0
1
2 multicolor mode extra color 1
3 multicolor mode extra color 2
4

screen border color

You cannot use the border color (source 4) in drawing commands. Color
source 1, foreground color, determines the default color of characters and graph-
ics on the screen. Changing the character color with the color keys changes only
the color of characters printed in text mode. Changing the foreground color
(source 1) changes both the default graphics drawing color and the color of
characters printed in text mode.

2. You can choose any of the colors listed on the color keys by using the
following numbers:

1 = black 9 = orange

2 = white 10 = brown

3 =red 11 = yellow-green
4 = cyan 12 = pink

5 = purple 13 = blue-green

6 = green 14 = light blue

7 = medium blue 15 = dark blue

8 = yellow 16 = light green

3. You can choose one of eight shades of a color by adding a luminance level.
To choose the darkest shade, use 0; the shades are progressively lighter, 7 being
the brightest.

Examples:

BASIC Version 3.5 Commands, Functions, and System Variables av

The luminance setting is optional. The default value is 7, which selects the
brightest shade of the color. When you use the color keys on the keyboard to
change the character color, a preset luminance value is automatically used.

Black has no luminance values, although it is not an error to include this
parameter when you are selecting black. The luminance settings 0 through 6 for
white are shades of gray.

COLOR O, 12,3 Changes the screen background to medium pink.
COLOR 1, 3,0 Changes the foreground color to dark red.

CONT Abbr. cO

Lets you restart a BASIC program after you have interrupted its execution
with the STOP key, the STOP command, or an END command in a program.
The program resumes at the point in the program where execution was inter-
rupted, and all variables retain their most-recent values.

You cannot resume execution with CONT if any of the following events have
occurred between STOP and CONT:

® You change or add lines to the program.

® You move the cursor to a program line and press RETURN with or without
changing the line.

® The program stopped because of an error (in which case an error message
would have appeared on the screen).

® You do anything to cause an error after suspending the program.
® You execute a CLR command.

COPY Abbr. coP
COPY Ddrive, old file name TO Ddrive, new file name, ON Uunit

Makes a duplicate of a disk file or an entire disk. On a single disk drive, such as
the 1541, you can copy afile only onto the same disk. You must give a copy on the
same disk a different name from the original file. The COPY procedure does not
affect the master file. In addition, you can copy from one drive to another if you
have a dual disk drive. You cannot use the COPY command to copy from one
single disk drive to another with different unit (device) numbers.

Unlike the BACKUP command, COPY does not header the recipient disk
before duplicating the file(s). The advantage of this difference is that you can use
COPY to add files to a disk that already contains files you want to keep. The only
drawback is that you must take care not to COPY a group of files onto a disk that
does not have enough room. Avoid this problem by checking the directories of
both disks before you issue the COPY command. A 1541 disk can hold up to 664
blocks (256 bytes each) of information.

Examples:

28 The BASIC Language

Also unlike the BACKUP command, COPY does not duplicate disk errorsina
file. If a file you are COPYing contains a disk error, the file is not copied. The
advantage of this difference is that you do not duplicate inaccessible files.

Parameter Values Default
drive number, Oorl : 0
"master file” any file name in quotes

TO drive number, Oorl 0
"receiving file”, any file name in quotes

U unit number 8-11 8

1. Bothdrive numbers can be omitted if you are making a duplicate of a file on
the same disk. .

2. The Master File is the name of the file you want to copy. The name must be
in quotes.

3. TO is a necessary part of the COPY command. The drive number can be
omitted, but TO cannot.

4. The Receiving File is the name of the file that will become the copy of the
master file. The receiving file name can be the same as the master file, which is
likely when you are copying from one drive to another. The name must be in
quotes. The receiving file name must be different if you are copying a file onto the
same disk.

5. Unit number is an optional parameter. Use it only if you have more than
one disk drive connected to your computer and you are using a device other
than unit 8 in the COPY procedure. You must precede the unit number with U,
and the unit number must be between 8 and 11. You can type ON before the unit
number, but ON is not required. Most people will never need the unit number
option.

Note: The drive and unit number parameters and the file names can be
specified with a variable or expression in parentheses.

COPY DO, "ADDR" TO D1, ”ADDR” Copies the file ADDR from the
disk in drive 0 to the disk in drive 1.

COPY DO TO D1 Copies all the files on the disk in
- drive 0 to the disk in drive 1.
COPY "MEMO1” TO "MEMOR" Copies the file MEMOI onto the

same disk, renaming the file
MEMO?2. This does not affect
MEMOI.

Parameter:
Examples:

Parameter:

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 29

COS Abbr. none
COS (number)

COS is the numeric function that finds the cosine of the angle in parentheses.
The angle must be expressed in radians. For more information, see the Mathe-
matical Calculations section of Chapter 3.

any number or numeric expression

PRINT COS(w) Prints the cosine of an angle of 7 radians (180
-1 degrees).

PRINT COS(30*7/180) Prints the cosine of an angle of 30 degrees.
.866025404

DATA Abbr. dA -
DATA data list

Contains a list of values that are available for assignment to variables by
READ commands. DATA commands are complements to READ commands;
neither command works without the other.

DATA items can be either numbers or text. Text data does not need to be
enclosed in quotes unless it includes an embedded comma or colon, although the
text items are treated as if they were in quotes. Since DATA commands always
contain constant values, not variable names, the computer assumes that any
nonnumeric DATA item is text.

DATA commands can contain any number of values as long as the list is no
longer than 88 characters on the screen. READ commands can get data from
DATA commands anywhere in the program.

You must have enough DATA values in a program to assign a value to every
variable in the READ commands that are executed in the program. If there are
not enough DATA values, the program is aborted and the error message OUT

- OF DATA is displayed.

When DATA items are READ, the computer keeps track of the last value read
by marking its place with a data pointer. You canreREAD DATA items by using
the RESTORE command, which resets the data pointer to the beginning of a
DATA command.

list of data values separated by commas

DATA items must be separated by commas. Text items do not have to be in
quotes unless they contain commas or colons.

10 DATA 1,2,3,4 ' .
20 READ AB READ:s the first two values from
30 PRINT "A =";A;"B =";B the DATA list.

Example:

Parameters:

30 The BASIC Language

40 READC,D READs the next two values

50 PRINT “C =";C;"D =";D from the DATA list.

60 RESTORE Resets the data pointer to the
beginning of the DATA list.

70 READ X\Y,Z, READ:s the first three values

90 PRINT "X =";X;"Y = ",X;"2 =";2 from the RESTOREd DATA
list.

RUN

A=1B=2

C=3D=4

X=1Y=R2=3

DEC Abbr. none

DEC (string)

Finds the decimal (base 10) value of a hexadecimal base 16) number. Hexa-
decimal base digits are 0 through F, which equals decimal 15. The hexadecimal
number, which must be a string expression, must be between 0 and hexadecimal
value SFFFF, which is equal to decimal 65535. (The dollar sign preceding a
number is used to indicate that the number is hexadecimal but should NOT be
included in the string sent to the DEC function.) The DEC function returns the
unsigned value of the hexadecimal number. To get the 16-bit two’s complement,
X, of a hexadecimal number, X§, use

X = DEC(X$)+(DEC(X$)>B2767)*65536

PRINT DEC(”1E"); DEC(”10"); DEC("A")
30 16 10

DEF FN Abbr. dE fn
DEF FN name (variable) = function

Defines a calculation as a function. DEF FN saves time and errors by sparing
you from having to reenter a calculation you will use more than once in a
program. After the function is defined as a formula, you can use it to solve a
specific problem. To do so, call the function and supply the value you want the
formula to solve, with FN name (value).

function name (variable) = calculation

1. The function name is any legal variable name. When you want to use the
function later in the program, you give FN followed by the function name.
2. The (variable)is replaced by a value when you call the function you defined.

Example:

Examples:

BASIC Version 3.5 Commands, Functions, and System Variables 31

This replacement is how you use the generic formula you defined in the DEF FN
to solve a specific calculation.

3. The calculation must follow the rules for calculations.

Note: If BASIC RAM is moved by a GRAPHIC command after defining a
function, the function may not be evaluated properly. Enter (and immediately
leave if necessary) the graphic mode before you define the function. ‘

10 DEF FNX(Y) =INT(A*2+7Y) Defines the formula for function X.

15 INPUT A ‘

20 PRINT FNX(35.2); FNX(19.9) Calls function X to use its formula
to solve for 35.2 and then for 19.9,

RUN which replace Y in the function
?5 formula.

45 29
DELETE Abbr. deL

DELETE line number-line number

Deletes BASIC program lines. You can issue this command only in immediate
mode, not in a BASIC program.

line number(s)

You can delete one line at a time or a group of lines. To delete one line, just
enter the line number after the word DELETE. To delete a group of lines, enter
DELETE, then the first line number, a dash, and the final line number.

You can also delete all the lines from the beginning of the program up to a
certain line by entering DELETE followed by a dash and the last line you want to
delete. To delete all the lines from a certain line to the end of the program, enter
DELETE, the first line you want to delete and a dash.

DELETE 75 Deletes line 75.

DELETE 150-250 Deletes lines 150 through (and including) 250.

DELETE -90 Deletes all lines up to and including 90.

DELETE 140- Deletes line 140 and all following lines to the end of
the program.

DIM Abbr. dI

DIM array name (subscripts), array name (subscripts), etc.

Defines an array, which is also called a matrix. An array is a table of related
values that you can use as a unit or as individual data items. You can refer to any

Examples:

32 The BASIC Language

element of the array by giving the array variable name and the subscripts in the
array where the element is located.

The DIM command names the array and defines the number of elements in the
array. An array can have one, two, or more dimensions. If you use an array
element without first DIMensioning the array, the computer gives the array the
default number of elements (11).

You cannot change the dimensions of an array after you have DIMensioned it,
or after you have accepted the default dimensions. If you DIM the array after you
have used it, or try to reDIM the array, the program is aborted and the error
message REDIM’D ARRAY is displayed.

The first element in any dimension of an array is numbered 0, not 1. This means
that an array dimensioned as (5,3) is actually 6 by 4. When you figure the number

‘of elements in an array, add 1 to each dimension, then multiply the results of the

additions. For example, if the array is dimensioned DIM K(2,4), the array
contains (2 + 1) % (4 + 1) ='15 elements.

array name (subscripts), array name (subscripts), etc.

The default number of elements is 11 (0-10).

1. The array name is a variable that follows standard variable rules. Arrays
containing text elements must have text-string variable names (e.g., A$). Arrays
containing numeric elements must have a numeric variable name.

2. The subscripts set the number of elements in each dimension of the array.

You can define more than one array in a DIM command. Separate multiple
array dimensions with a comma.

You can use arrays with more than two dimensions by supplying additional
subscripts in the dimension command. For example, to DIMension a four-
dimensional array, you can use DIM A(2,2,3,2).

10 DIM G(9) Defines a one-dimensional array with ten
’ elements.
20 DIM G$(3,8) Defines a two-dimensional text array with 24 ele-
ments (3+1 rows times 5+1 columns).
30 DIM H(R,3,4) Defines a three-dimensional array with 60 elements

(2+1 times 3+1 times 4+1).

90 PRINT G#$(2,2) Prints the element at row 2, column 2.

100 INPUT A(3) INPUTs a value for element 3 in array A. Since
array A has not been defined in a DIM command,
it is given the default number of elements (11).

DIRECTORY Abbr. diR
DIRECTORY Ddrive, Uunit, file name

Displays the following information about the contents of a disk:

Parameters:

Examples:

BASIC Version 3.8 Commands, Functions, and System Variables 33

® Names of all files on the disk
® The length of each file in blocks

® Howmuch storage space remains on the disk

Press CONTROL and S to suspend the display, and any key to resume display.
Hold down & to slow the display.

Each 1541 disk can contain up to 664 blocks of information. You should check
to see how many blocks remain free before you COPY files onto a disk. You
should also check before you save a file if you think the disk is nearly full.

D drive number, U unit number, “file names or prefixes”

1. Drive numbers are either 0 or 1. No other numbers are allowed. The drive
number must be preceded by D (e.g., D0). You do not need this parameter if you
are using a single drive such as the 1541, or if you are accessing drive 0 of a dual
drive.

2. U unit number is an optional parameter. Use it only if you have more than
one disk drive connected to your computer and you are accessing a device other

- than unit 8. You must precede the unit number with U. You can also type ON

before U and the unit number, but ON is not required.

3. You can display a partial disk directory by specifying a file name. It is
especially useful to use wild cards in the file name. For example, after you type
DIRECTORY, add, in quotes, the beginning letters of the file names you want to
list and then the * sign. The * sign stands for all the other letters in the file names
you want to list. The command looks like this: DIRECTORY ”beginning
letters*”.

You can use the question mark as a wild card to stand for any single character
in a file name.

Note: The drive and unit number parameters and the file name can be speci-
fied with a variable or expression in parentheses.

DIRECTORY - Displays the complete list of files on the disk
currently in the disk drive.
DIRECTORY D1 Displays the directory for the disk in drive 1

of a dual drive.

DIRECTORY U9, “"LET*” Displays a list of files whose names begin
with the characters LET. Other files on the
disk in unit 9 are not listed.

DIRECTORY "TEST?” Displays the files whose names are TEST and

: one additional character (e.g., TESTI,
TESTX).

Parameters:

Examples:

34 The BASIC Language

DLOAD . Abbr. dL
DLOAD file name, Ddrive, Uunit

Loads a disk program into meniory. You cannot use DLOAD to load pro-
grams from tape.

“file name”, D drive number, U unit number

1. You must include the name of the file. Enter the name in quotes. You can
use a variable name in place of the file name, but the variable must have a value,
and it must be in parentheses (not in quotes). The only time this is likely to be
useful is when you load a program from within another program.

2. Drive numbers are either 0 or 1. No other numbers are allowed. The default
value is 0. You do not need this parameter if you are loading from a single disk
drive.

3. Unit number is an optional parameter. Use it only if you have more than one
disk drive connected to your computer and you are using a device other than unit
8 in the loading procedure. You must precede the unit number with U. You can
also type ON before U and the unit number, but ON is not required.

Note: The drive and unit number parameters and the file name can be speci-
fied with a variable or expression in parentheses.

Note: Only program-type files can be DLOADed.

Note: In program mode, a RUN command (with no CLR) is automatically
issued following a DLOAD operation. This makes it possible to chain programs.

DLOAD "CIRCLES” Loads file CIRCLES from disk.
90 DLOAD (X$) Loads a file whose name is the current value of X§.
. File X$ is loaded during the execution of the
current program.

DO ... UNTIL/WHILE/EXIT . ..LOOP Abbrs. do/uN/wH.exI/loO
DO UNTIL logical value WHILE logical value

commands

EXIT

commands

LOOP UNTIL logical value WHILE logical value

Repeats execution of the commands between DO and LOOP. The DO loop
cannot stop itself unless you add commands or clauses that set conditions for
terminating the loop. UNTIL, WHILE, and EXIT are optional clauses that can
be included to terminate a DO loop. '

UNTIL and WHILE clauses, which control the number of loop executions,
contain conditional formulas that are evaluated each time the loop repeats. EXIT
lets you abort the loop. '

Example:

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 38

Parameters
Required Optional
DO UNTIL conditional formula

WHILE conditional formula

Commands to be executed by the loop
EXIT
LOOP. _ UNTIL conditional formula

WHILE conditional formula

1. The UNTIL clause usually contains at least one variable that is compared
with a value. The condition of this comparison is checked each time the DO loop
executes. The loop continues repeating until the condition(s) is (are) met. Pro-
gram control then passes to the command after the LOOP command.

You can set multiple conditions by linking them with AND or OR (e.g.,
UNTIL X =5OR Y > 10).

20 DO UNTILX =10 This DO loop executes until X equals 10. When
30 PRINT X this condition is met, the loop ends. '
40 X=X+2

50 LOOP

2. The WHILE clause usually contains at least one variable that is compared
with a value. The condition of this comparison is checked each time the DO loop
executes. The loop continues repeating while the condition(s) is (are) met. Pro-
gram control then passes to the command after the LOOP command.

You can set multiple conditions by linking them with AND or OR (e.g.,
WHILE X =5 OR Y > 10).

20 DO WHILE X <10 This DO loop executes until X is greater than or

30 PRINT X equal to 10. When this condition occurs, the loop
40 X=X +2 ends.
50 LOOP ’

Notes: The difference between UNTIL and WHILE is that UNTIL conditions
start off not being met; the loop continues until they are. WHILE conditions start
off being met; the loop continues until they are not met.

The conditions in UNTIL and WHILE commands are always either true (met)
or false (not met). If you use more than one condition, join them with AND or
OR. If you use AND, both conditions must be met; if you use OR, only one
condition has to be met. |

Both DO and LOOP can have UNTIL conditions or WHILE conditions, but
not both. '

Example:

36 The BASIC Language

You can have a conditional clause (WHILE or UNTIL) in both the DO and
LOOP commands in one loop.

If you omit both UNTIL and WHILE clauses in the DO loop, the loop is an
infinite loop: it continues executing without stopping. You must interrupt the
program with the STOP key to terminate the loop. ,

3. EXIT lets you leave the loop before the UNTIL or WHILE conditions end
the loop. You can, for example, use EXIT to check for unwanted values and end a
loop if a particular value is encountered. After an EXIT command, program
execution passes to the line following the LOOP command.

Note: Always use EXIT (never GOTO) to leave a loop prematurely.

5 DATA YES, NO, YES, NO, END Lists DATA values.

10 DO WHILE X < 50 Begins a loop that runs as long as
X is less than 50.

20 X=X+1 Increments the counter for the
WHILE clause.

30 READ ANS$ Reads data from line 5.

40 IF ANS$="END” THEN EXIT Aborts the loop if ANS$ = END.

50 LOOP Sends the loop back to DO.

NEW Clears the previous program.

10 DO:PRINT "HALT!" Begins a DO loop.

20 X=X+1 Adds 1 to X each time the loop

o executes.
30 IF X'= 25 THEN EXIT Aborts the loop when X = 25.
40 LOOP Sends the loop back to DO.

4. LOOP works with DO to set conditions for a repeated sequence of program
lines. LOOP works for DO as NEXT does for FOR: it marks the end of the loop
and sends execution back to the beginning of the loop.

If youdo not include an UNTIL or WHILE clause with the DO command, you
can add one here. The UNTIL and WHILE commands can appear with either the
DO command or the LOOP command, or both.

DRAW Abbr. dR
DRAW color source, coordinates TO coordinates TO coordinates etc.

Draws dots, lines, and any angled shape. DRAW can be used only in one of the
graphic modes. Though you can draw any polygon with DRAW, it is sometimes
simpler to use CIRCLE to draw polygons with regular-length sides. See Chapter
4 for more information on DRAW coordinates.

BASIC Version 3.5 Commands, Functions, and System Variables 37

Parameter Values Default
Color source 0-3 1
Coordinates Pixel cursor
Column coordinate
High-res modes 0-319
Multicolor modes 0-159
Row coordinate 0-199

* TO coordinates
Column coordinate

High-res modes 0-319
Multicolor modes 0-159
Row coordinate 0-199

TO column, row, etc.

1. The color source indirectly selects the color for the drawing. There are five
color sources, but color source 4 (the border color) cannot be used in drawing
commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color

2 multicolor mode extra color 1
3

multicolor mode extra color 2

The color-source number you include in the DRAW command tells the com-
puter to draw in the current color for that source. For example, if you select 1, the
computer draws the shape in the current foreground color. If you want to use a
color other than one of the current source values, you must first use the COLOR
command to change one of the source values. Only sources 1 and 2 can be used to
draw with more than one color on the same screen. Sources 0 and 3 are global
(whole screen) colors. -

If you want to use the default value (1, the current foreground color), you do
not have to type a number, but you must type acomma before the next parameter.

2. The first coordinates name the starting point of the drawing. If you omit this
parameter, the current location of the pixel cursor is used as the starting point. If
you omit the first coordinates, no placeholder comma is required.

3. TOis arequired part of the DRAW command unless you are just drawing a
- dot. : .

4. The second and subsequent coordinates name the ending points of the line
segments. You can add more than one TO clause to draw complex designs. If you

Examples:

Parameters:

38 The BASIC Language

do, the ending point of the first line segment becomes the starting point of the
next line segment, etc.

5 GRAPHIC 1,1
10 DRAW, 30,25 TO 289,150 Draws a line from column 30,
row 25 to column 289, row 150.
20 DRAW, 160,25 TO 310,80 TO Draws a four-sided open shape.
240,100 TO 160,100 TO 80,50

30 DRAW TO 319,50 Draws a line from the current
: pixel-cursor location to column
319, row 50.
DS Abbr. none

Youcan PRINT DS to display a reading of the disk drive error number, or you
can examine DS in a program when you need to know the drive status. Use DS
with DSS$ to find out why the red error light on the disk drive is blinking after a
disk operation such as DLOAD. If no error occurred, DS is zero.

DSS$ Abbr. none

You can print DSS$ to display a message explaining the drive status. Use DS$
with DS to find out why the red error light on the disk drive is blinking after a disk
operation such as DLOAD. The error messages are listed in Appendix A.

DSAVE Abbr. dS
DSAVE file name, Ddrive, Uunit"

Stores the current program onto a disk. You cannot use DSAVE to store
programs onto cassette tape.

“file name”, D drive number, U unit number

1. You must include the name of the file. Enter the name in quotes. You can
use a variable name in place of the file name, but the variable must have a value,
and it must be in parentheses (not in quotes).

2. Drive numbers are either 0 or 1. No other numbers are allowed. The default
value is 0. You do not need this parameter if you are storing onto a single disk
drive.

3. Unit number is an optional parameter. Use it only if you have more than one
disk drive connected to your computer and you are using a device other than unit
8 in the loading procedure. You must precede the unit number with U. You can
also type ON before U and the unit number, but ON is not required.

Note: The drive and unit number parameters and the file name can be speci-
fied with a variable or expression in parentheses.

BASIC Version 3.8 Commands, Functions, and System Variables 39

Examples: DSAVE “BOXES” Stores the program BOXES onto the disk.

Example:

90 DSAVE (A$),TU9 Stores a file onto the disk in drive unit 9. The
name of the file is the current value of A$. The
program is saved during execution.

EL Abbr. none

Determines the line number of the last BASIC error that occurred in a
program. Use PRINT EL to display the line number. The reserved variable EL is
often used in conjunction with the TRAP command, which isolates errors
without interrupting program execution.

ELSE Abbr. eL

An optional clause youcanadd toan IF ... THEN. .. ELSE command. See
IF... THEN...ELSE.

END Abbr. eN

Ends a program with no message. You need to end a program with the END
command when subroutines or trap routines follow the body of the program.
You can also use END somewhere in the body of the program to terminate the
program if some condition is met.

50 IF A$="STOP” THEN END Ends the program if A$ equals STOP.
ER Abbr. none

Determines the error number of the last BASIC error that occurred in a
program. Use PRINT ER to display the error number. The reserved variable ER
is often used in conjunction with the TRAP command, which isolates errors
without interrupting program execution. The BASIC errors are listed in Appen-
dix A.

ERRS Abbr. eR
ERRS (number)

Returns the error message describing the BASIC error number in parentheses.
The function ERRS$ is often used in conjunction with the TRAP command, which
isolates errors without interrupting program execution. To display the error
message for the most recent error in the program, type PRINT ERRS$(ER).

Parameter: a numeric expression with value 1-36

The BASIC error messages are listed in Appendix A.

Example:

Parameters:

40 The BASIC Language
EXIT Abbr. exI

Terminates a DO ... LOOP conditional command sequence. You cannot use
EXIT with other commands, including IF ... THEN ... ELSE sequences. See
DO.

EXP Abbr. eX
EXP (number)

Numeric function that finds the value of the mathematical constant e (approx-
imately 2.71828183) raised to the power in parentheses. To find exponentials of
other numbers, use the up arrow symbol.

any numeric expression

PRINT EXP(-1) Displays the reciprocal of e.
367879441

FOR...TO...STEP...NEXT Abbrs. fO/to/stE/nE
FOR variable = start value TO end value STEP increment
commands

NEXT variable, variable, etc.

Creates a loop to repeatedly execute all commands between the FOR com-
mand and the NEXT command. The loop repeats until the counter variable in the
FOR command equals or exceeds the value of the ending point.

If you omit the optional STEP command, the FOR counter is incremented by 1
each time the loop executes. You can use STEP to increment the counter by any
number. For example, you can use a STEP increment of 25 to draw a shape
repeatedly, each time tilted 25 degrees more. You can also use STEP to count
backwards by specifying a negative number.

FOR counter variable = starting point TO ending point STEP increment
commands '

NEXT counter variable

1. The FOR command contains a variable whose value is updated each time
the loop is executed.

The FOR command also contains the startlng and ending points for the
number of times the loop will execute. The starting and ending points can have
any value, including variables. If the starting point is higher than the ending
point, you normally include a negative STEP value.

2. The STEP clause, which is optional, tells the computer how much to add to
the current value of the counter each time the NEXT command sends execution
back to the FOR command. The default value is 1.

Examples:

BASIC Version 3.5 Commands, Functions, and System Variables 41

A negative STEP value decreases the value of the counter variable each time
the loop is executed. (Remember that adding a negative value is like subtracting.)

3. The commands that are to be repeated during loop execution appear
between the FOR command and the NEXT command.

4. The NEXT command tells the computer to go back to the FOR command.
When the FOR command is reached again, the STEP value is added to the value
of the counter. When the counter passes the ending point, the loop terminates.
Never leave a FOR . . . NEXT loop with a GOTO. You can always leave when
NEXT is executed by setting the loop variable equal to its ending point.

Note: AFOR ... NEXT loop is always executed once. The counter variable is
updated before leaving the loop.

The NEXT command can contain the FOR counter variable, but it is not
required. If you are nesting loops, use the counter variable in the NEXT com-
mands to avoid errors. The NEXT command can also contain a number of
counter variables for nested loops. The variables must be listed starting with the
innermost loop variable and ending with the outermost loop variable, therefore,
nesting rules are followed.

Nesting Multiple FOR ... NEXT Loops Youcannestupto 10 FOR ... NEXT
loops. Note the following when you nest loops:

® The inner loop becomes part of the outer loop.

® The inner loop must start and end between the beginning and ending of the
outer loop.

® The inner loop executes a full cycle from starting to ending points each time the
outer loop executes once.

Chapter 3 contains more information on using loops in BASIC programs.

10 FOR X = 10 TO 50 STEP 15
20 PRINT "X ="; X

30 NEXT ,

40 PRINT “AT THE END OF THE LOOP, X =";X

RUN

X=10

X =25

X=40

AT THE END OF THE LOOP, X = 55

NEW

Parameter:

Example:

42 The BASIC Language

10 FORY=1TO3

20 FORZ=6TO1lSTEP-R
30 PRINT "Z ="; Z;

40 PRINT"Y =";Y

50 NEXT Z: NEXTY This line could also read NEXT Z,Y.

RUN

Z2=6 Y-=1 While Y, which is part of the outer loop, executes
Z=4 Y-=1 once, Z, from the inner loop, executes all three times.
Z=2 Y-=1 When Y makes its second execution, Z repeats
Z=6 Y=2 another full set, and so on.

Z=4 Y=2

Z2=2 Y=2

Z=6 Y=3

Z=4 Y-=3

Z=2 Y=3

FRE Abbr. fR

FRE (number)

Examines the number of available bytes of RAM. Use PRINT FRE(0) to
display the amount of memory available. The FRE function uses a dummy
argument, which means that the number in parentheses is meaningless. You have
to include the parameter anyway; just type FRE(0).

- GET Abbr. gE

GET input list

Like INPUT, GET accepts input from the keyboard during program execu-
tion. GET, however, accepts only a single character at a time as data entry. In
addition, GET does not wait for input, but returns a null (empty) string if no key
is pressed. This allows you to check repeatedly for keyboard entry while other
operations continue. To force the computer to wait for input, use the GETKEY
command.

variable(s)

The variable is nearly always a string variable. It stands for the key to be typed
in response to the GET command. Use of a numeric variable allows only the 0

- through 9 keys to be entered. Any other key causes a type mismatch error, which

aborts the program unless TRAPped.

10 PRINT “PRESS A KEY TO STOP ME” Prints message to the screen.

20 GET A$:IF A$="" THEN 10 If no key is pressed, then go
to 10.

30 PRINT "WHAT A RELIEF” Program continues normally.

Example:

Parameters:

BASIC Version 3.8 Commands, Functions, and System Variables 43

GETKEY abbr. gEKE
GETKEY input list :

Like INPUT, GETKEY accepts input from the keyboard during program
execution. GETKEY, however, accepts only a single key at a time as data entry.
Unlike GET, GETKEY waits for input.

variable(s)

The variable is nearly always a string variable. It stands for the key to be typed
inresponse to the GETKEY command. Use of a numeric variable allows only the
0through 9 keys to be entered. Any other key causes a type mismatch error, which
aborts the program unless TRAPped.

10 ? "PRESS THE CURSOR KEY TO ANSWER"

20 ? "MY GROUP IS: <- RED OR BLUE ->"

30 GETKEY A$ Waits for you to
press a key; the key’s
value is assigned

to AS.
40 IF A$ = CHR$(157) THEN ? “RED GROUP, Checks key entered.
DO ODD-NUMBERED EXERCISES” CHRS$(157) is cursor-
left key code.
50 IF A$ - CHR$(29) THEN ? “BLUE GROUP, Check key entered.
DO EVEN-NUMBERED EXERCISES” CHR$(29) is cursor-
right key code.
GET# Abbr. gE#

GET# file number, input list

Retrieves data one character at a time from an OPENed device or file. GET#
works like a GET command except that the GET command gets a character from
the keyboard, while the GET# command gets a character from a device or a file.
GET# works like INPUT# except that INPUT# gets a whole group of characters
from the file, while GET# gets only one character at a time.

file number, variable(s)

1. The file number is a logical file number that links the file or device to other
commands, including the OPEN command that accesses the device or file before
it can be used. ‘

2. The variable is nearly always a string variable. Use of numeric variables
allows only values from ASC(“0”) (48) to ASC(“9”) (57) to be read. Anything else
causes a type mismatch error, which aborts the program unless TRAPped.

Example:

Parameter:

Example:

44

10 OPEN 8,8,2,”$"

20 DO UNTIL ST<>0

30 GET#8 K$

The BASIC Language

40 IF(ASC(K$)AND127>31 THEN PRINT K$

50 LOOP
60 CLOSE 8

GOSUB line number

Opens communica-
tion to the disk
directory file.
Repeats a loop until
the status byte indi-
cates an end-of-file
Or an error.

Assigns one character
from the disk file

to K$.

Prints noncontrol
characters.

Closes disk file.

Branches the program to a subroutine, which is a group of program lines that
performs a reusable task. You can reuse a subroutine as often as you like just by
calling it with the GOSUB command. Subroutines are particularly useful in
programs that repeat a task.

Subroutines can appear anywhere in the program. They are ended by the
RETURN command, which sends program control back to the main body of the
program. Do not exit subroutines with a GOTO command. The program con-
tinues at the line following the GOSUB command.

starting line number for subroutine

10

GOSUB 80

GRAPHIC 1,1

IF LEFTS(CS,1)
IF LEFTS(CS,1)
COLCR 1,C,3

non

"R" THEN C
qui THEN C

INPUT "WHAT SHAPE DO YOU WANT TO DRAW"; S$
INPUT "DO YOU WANT THE SHAPE TO BE RED, BLUE, OR GREEN"; C$

IF S$ <> "CIRCLE" THEN INPUT "HOW MANY SIDES DOES THE SHAPE HAVE"; X
IF S$ = "CIRCLE" THEN X = 180 '
IF X = ¢ THEN PRINT "ZERO IS NOT ALLOWED. REENTER":GOTO 30

3: GOTO 119
7: ELSEC = 6

REM AFTER SUBROUTINE, PROGRAM RESUMES AT LINE 50
INPUT "WANT TO DRAW ANOTHER SHAPE"; A$
IF LEFTS(A$,1) = "N" THEN END: ELSE GOTO 1@
REM BEGIN SUBROUTINE TO DRAW SHAPE

REM USE INPUT FROM LINE 20 TO SET COLOR IN LINE 110

REM USE INPUT FROM LINE 30 TO FIGURE NUMBER OF SIDES OF SHAPE
CIRCLE, 160,100,690,59,,,,360/X

Parameter:

Examples:

BASIC Version 3.8 Commands, Functions, and System Variables 48

-

130 PAINT, 160,100
140 CHAR,2,2, "YOU HAVE DRAWN A "+S$

145 REM USE DELAY LOOP TO PROLONG SHAPE DISPLAY
150 FOR Y = 1 TO 300: NEXT Y

155 REM SWITCH BACK TO TEXT MODE

160 GRAPHIC 0,1

165 REM END OF SUBROUTINE

170 RETURN

GOTO or GO TO Abbr. g0
GOTO line number

Tells the computer to branch to another line and continue execution there. You
can also use GOTO in immediate mode to jump into a program and begin
executing it. The difference between executing a program with a RUN command
and an immediate mode GOTO is that the RUN command clears all variables
before executing the program, and GOTO does not.

line number

GOTO can send execution to a later or earlier line in the program. When
GOTO sends the program back to a previously executed line, an infinite loop
results unless you also include a statement or mechanism such as a counter to end
the loop.

10 INPUT"WHAT'S YOUR NAME”; N$ GOTO sends the program

20 GOTO 10 back to line 10 each time line
20 is executed; this causes an

NEwW infinite loop.

10 INPUT “WANT TO REPEAT”; N$ GOTO sends the program

R0 IF LEFT$(N$,1) = “N” THEN END back to line 10 unless you

30 GOTO 10 answer N to the INPUT ques-
tion. Typing N ends the loop.

GRAPHIC Abbr. gR

GRAPHIC mode, clear

GRAPHICCLR

Switches to one of the four graphic drawing modes, or from a graphic drawing
mode to the text modes. You can also clear the screen or the bit-mapped memory
area that is set aside for graphics when you enter one of the graphic drawing
modes.

a6 The BASIC Language

Parameter Values Default
Mode 0-4 No default
Clear screen option Oorl 0

CLR command option CLR No default

1. You can use the GRAPHIC command to switch to any of these modes:

text mode
high-resolution mode
split-screen high-resolution mode

multicolor mode

A W N - O

split-screen multicolor mode

GRAPHIC 0 switches from a drawing mode to text/graphic mode, in which
letters are uppercase and you can print all the graphic symbols on the fronts of the
keys. If you want to switch to the alternate text mode, in which letters can be both
lowercase and uppercase and in which you can print only the left-side graphic-key
symbols, first switch to text/graphic mode, and then press the SHIFT and
keys together or PRINT CHR$(14).

2. If you want to include a screen-clearing option with the mode choice, add a
comma and 1 after the mode number. If you do not add this option, the computer
switches back to whatever was on the screen the last time it was used in the current
computing session.

3. The GRAPHIC command can also release the 12K area devoted to graphic
modes. The first time you access any one of the graphic drawing modes, a 12K
area is set aside for the graphics screen and your BASIC program is moved above

“it. When you return to a text mode, this area remains set aside for graphic mode
use unless you tell the computer to release it. Just issue a GRAPHIC CLR
command to regain use of this 12K of memory.

Note: If you define a function with DEF FN before you execute a GRAPHIC
command, the function subsequently may not execute properly (when FN is
‘used). In other words, the function definition is not moved properly. Care must
be taken when defining functions and using graphics in a single program.

Note:. A graphics screen actually requires only 10K bytes of memory. The
amount removed from BASIC RAM is 12K because the screen must be located
on 8K boundaries. The screen is located from $2000 to $3FFF; its color/lumi-
nance memories are located from $1800 to $1 FFF. This leaves the 2K from $1000
to $17FF unused, but unavailable for BASIC. '

Examples:

oo

BASIC Version 3.8 Commands, Functions, and System Variables 47

GRAPHICO,1 Switches from a graphic mode to the text modes. The
last text screen is cleared.
GRAPHIC CLR Releases the 12K bit-mapped graphic area.

GRAPHIC 2,1 Switches to split-screen high-resolution mode and clears
the graphic screen.

GRAPHIC 3 Switches to full-screen multicolor mode without clearing
the graphic mode screen.

GSHAPE Abbr. gS

GSHAPE string variable, coordinates, mode

GSHAPE (GetSHAPE), which is the opposite of the SSHAPE (SaveSHAPE)
command, retrieves and displays a graphic screen area saved by an SSHAPE
command. You can use SSHAPE and GSHAPE in any graphic mode to store
and retrieve a rectangular section of the screen that is up to 255 text-sized
characters long.

These graphic screen areas are saved as text-string values in memory. You use a
text-string variable to identify the screen area, just as you use a variable to
identify any type of value.

After yousave a screen area with SSHAPE, you can display it anywhere on the
graphic screen. When you retrieve the area in the GSHAPE command, you give
the screen location where you want the area to be displayed.

string variable, top corner coordinate, display mode

1. The string variable is the name assigned to the graphic screen area saved
with the SSHAPE command. Retrieve the area by using the same string-variable
name used in the SSHAPE command.

2. Display a copy of the saved graphic screen area anywhere on the screen by
giving the coordinates of the top left corner of the screen area where you want the
drawing to appear.

3. When youretrieve the saved area, you can choose one of the five options for
displaying it.

display duplicate of saved area (default)

display saved area in reversed colors

0

1

2 OR saved area with current area

3 AND saved area with current area
4

XOR saved area with current area

Option 0, which is the default value for this parameter, draws the area as you
saved it.

Parameters:

48 The BASIC Language

Option 1 inverts the color values, so the shape is drawn as a reversed image of
the saved area.

Option 2 overlays the shape on the existing screen pattern.

Option 3 displays only that part of the shape that covers an existing screen
pattern. :

Option 4 inverts the part of the existing screen pattern covered by the shape.

Chapter 4 further explains the GSHAPE and SSHAPE commands.

HEADER Abbr. heA
HEADER disk name, Idisk id, Ddrive, ON Uunit
]

Before you can store information on a new, blank disk, you must prepare the
disk by formatting it. Formatting, also called headering, puts the blank disk into
the format required by your disk drive. The disk is divided into blocks and a
directory for the disk is prepared. Headering is necessary because blank disks are
manufactured to be used in any brand of disk drive, and you need to format the
disk so that it is compatible with your disk drive.

You MUST header a new disk before you can save files on it, but use the
HEADER command with great care because headering completely and perma-
nently erases any files already on the disk. You can header a used disk if you are
willing to erase its current contents.

disk name”, Iid code, D drive number, U unit number

1. The disk name (in quotes) can be up to 16 characters long.

2. Give the disk a unique two-character code. Use two characters for an id
code, not just one. Type an I before the id code.

3. Drive numbers are either 0 or 1. The order of the id code and drive number
parameters can be reversed.

4. Unit number is an optional parameter. Use it only if you have more than one
disk drive connected to your computer and you are using a device other than unit
8 in the header procedure. You must precede the unit number with U, and the unit
number must be between 8 and 11. You can type ON before U, but ON is not
required.

Are You Sure?

When you issue a HEADER command and press RETURN in immediate mode,
the command is not executed immediately. First, the computer displays the
question ARE YOU SURE? This question gives you a chance to make sure the
disk does not contain information you want to keep.

To proceed with the headering procedure, type Y or YES and press RETURN.
To abort the header, just press RETURN. In program mode, the question is not
asked.

Examples:

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 49

Partial Headering

You can also clear a disk directory on an old disk without formatting the disk.
This procedure, which gives you an empty disk with the old id, is called a partial
header. Omit the id code from the HEADER command to do a partial header.

Note: The drive and unit number parameters and the disk name can be
specified with a variable or expression in parentheses.

HEADER "CIRCLES”,DO,IG3
HEADER “INSURANCE”,D1,IP5
HEADER "HOUSEFILES”,DO Performs a partial header.
HELP Abbr. heL
Highlights an erroneous command in a BASIC program by putting the com-
mand in flashing mode. If you want to highlight the error in a line, use HELP

after the computer displays an error message when you execute a program. The
HELP function key is defined with this BASIC command.

HEXS Abbr. hE
HEXS (number)

Gets the hexadecimal value for the decimal number in parentheses as a four-
character text string. The value of the number in parentheses must be between 0

- and 65535 inclusive. Since the hexadecimal value is always printed as a four-

character string, zeros are placed at the beginning of values that are less than four
characters long.

Note: The HEXS function accepts only nonnegative input. To use 16-bit two’s
complement input, use

X$ = HEX$(X-(X<0)*65536)

PRINT HEX$(45), HEX$(2001)
002D 07D1

IF...GOTO...ELSE Abbrs. if/g0/eLL
IF logical value GOTO line number : ELSE commands

Branches the program based on the value of a conditional clause. IF is a
compound conditional statement that checks the status of a condition in the
command and then chooses one of two courses of action.

One of the two IF command options is stated in the GOTO clause, which is
executed when the IF condition is true. When the IF condition is false, the GOTO

Example:

80 The BASIC Language

clause is ignored and execution passes to the next line in the program or to the
ELSE clause if one is present.

The GOTO clause is like a GOTO command: it tells the computer to go straight
to a specified line number and resume execution there. The line number can be
anywhere in the program.

IF...GOTO...ELSEis alimited variation of IF ... THEN ... ELSE. Use
IF...GOTO...ELSEinstead of IF... THEN... ELSE when the THEN clause
would contain a GOTO command anyway.

s true-false _condition GOTO line number : ELSE clause

1. The conditions in the IF command can use comparison operators (=, <, >,
<>, <=, >=) to compare values. The values can be any of the following:

® Numbers or text strings
® Any type of variable
® Variables on both sides of the comparison operator

® Mathematical formulas

2. The line number after GOTO tells the computer where to go when the IF
condition(s) is (are) true.

3. The ELSE clause contains instructions that are followed only when the IF
condition(s) is (are) false. The ELSE clause is always optional. It must be
separated from the rest of the command by a colon.

10 INPUT X Line 20 compares the value input for X to 0.
20 IFX<=0GO0TO 10 The GOTO command executes only when it is
30 PRINT X true that X is less than or equals 0.

IF ... THEN...ELSE Abbrs. if/tH/eL

IF logical value THEN commands : ELSE commands

IF is a compound conditional statement that checks the status of a condition in
the command and then chooses one of two courses of action.
One of the two IF command options is stated in the THEN clause. The other

“ option can be stated in an ELSE clause. If no ELSE clause is present, execution

continues with the next line in the program when the condition is false.

The status of the IF command condition determines whether the THEN clause
or the alternative is to be executed. THEN is executed when the IF condition is
true, or met; ELSE is executed when the IF condition is false, or not met. The
computer executes either the THEN clause or the ELSE clause, but never both.

BASIC Version 3.5 Commands, Functions, and System Variables 81

Parameters: true-false condition THEN clause : ELSE clause

Example:

Examples:

1. The conditions in the IF command can use comparison operators (=, <, >,
<>, <=, or >=) to compare values. The values can be any of the following:

® Numbers or text strings
® Any type of variable
® Variables on both sides of the comparison operator

® Mathematical formulas

2. The THEN clause contains commands that are executed only when the IF
command condition(s) is (are) true. The THEN clause, which is always a required
part of the IF command, can contain any legal commands. (If the THEN clause
contains more than one command, they must be separated by colons.) The THEN
clause must be typed on the same line as IF with no punctuation separating it
from the keyword THEN. If the THEN clause is a GOTO, the keyword GOTO
can be omitted.

50 IF X$ - "HALT” THEN END The program ends when X$ does
equal HALT. The THEN clause is
not executed otherwise.

3. The ELSE clause contains a command that is executed only when the IF
condition(s) is (are) false. The ELSE clause can contain any legal command. If the
ELSE clause is a GOTO, the keyword GOTO can be omitted. The ELSE clause is
always optional, but the THEN clause is always required, so an IF command
cannot have an ELSE clause but no THEN clause.

ELSE must be separated from the THEN clause by a colon. ELSE is a clause,
not an independent command; type THEN and ELSE clauses on the same lines as
the IF command. ‘

Note: IF commands can be “nested,” but their ELSE commands will not be.
When an IF condition is found to be false, the next ELSE clause on the line is
always executed.

30 IF A =B THEN PRINT When A equals B, the THEN
"EQUALITY”: ELSE GOTO 100 clause executes and the ELSE
clause does not. When the condi-
tion is false, the THEN clause
does not execute, and the ELSE
clause does.
40 IFA=0THENIFB=0 Prints BOTH 0 if A and B are
THEN PRINT “BOTH O”:ELSE zero. Prints ONE NONZERO if
PRINT "ONE NONZERO” either is not zero.

Example:

82 The BASIC Language

INPUT Abbr. none
INPUT string; input list

Accepts your input from the keyboard during program execution. The pro-
gram waits for you to type the input and press the RETURN key before it
continues. You can add a question to the INPUT command to help the user
understand the type of input expected.

: “prompt question”; variable(s)

1. The prompt question, which is optional, must be in quotes. If you omit the
prompt, do not put the semicolon before the variable.

Do not type a question mark at the end of the question. Whether or not you
include a prompt question, INPUT displays a question mark to indicate that
keyboard input is expected. If you add the prompt question, the automatic
question mark is displayed at the end of the question.

Note: If youdo not want a question mark to be displayed for keyboard input,
OPEN the keyboard (device number 0) as a file. Then, PRINT your prompt
(ending with a semicolon) and use INPUT# to read the keyboard.

2. The data values you input from the keyboard are assigned to the INPUT
variable. Use text-string variables for text input. You can use more than one
variable in an INPUT command. If you do, separate the variables with commas;
the semicolon is used only to separate the prompt question (if there is one) from
the variables. If you use more than one variable, you must enter a value for each
(separated by commas) before the program can continue. Otherwise, a double
question mark will prompt for the rest of the input.

10 INPUT “WHAT’S THE DESTINATION”; D$
20 PRINT "PACKAGE TO ”;D$

RUN

WHAT'S THE DESTINATION? LONDON
PACKAGE TO LONDON

INPUT# Abbr. iN

INPUTH# file number, input list

Retrieves a data value from an OPEN file or device and assigns it to variables.
INPUT# works like INPUT, but instead of getting data input from the keyboard,
INPUTH# gets data from a file or device. The file or device must have been opened
using the same logical file number. See also GET#. '

BASIC Version 3.5 Commands, Functions, and System Variables 83

Parameters: file number, variable(s)

Example:

1. The file number is a logical file number that identifies the file or device and
links it to other commands. The file or device must have been previously accessed
by an OPEN command with the same logical file number.

2. The variable type must match the type of value to be assigned (e.g., if you
are assigning text values, you must use text-string variables). If the INPUT#
command contains more than one variable, separate the variables with commas.

10 OPEN 8,8,15 | Accesses the disk drive error channel.
R0 INPUT#8,N,E$,T,S8 Gets three numeric and one text-string values
from the channel and assigns them to N, ES$,

T, and S.
30 PRINTN, E$, T, S Prints the values on the screen.
40 CLOSE 8 Closes the disk channel.
INSTR Abbr. inS

INSTR (master string, substring, start position)

You can find the position of a text string within another text string by using the
INSTR function. INSTR returns a number that represents the character position
in the master string where the sought string begins. If the sought string is not
present, a value of 0 is returned.

The INSTR function has an optional parameter that lets you begin the text-
string search at any character location in the master string. Use this option if you
have found one instance of the sought string and want to search for additional
appearances of the sought string or if you want to begin the search after some
known occurrence of the sought string. This option is the only way to find
additional instances of the sought string.

master string, sought string, starting position

1. The master string is the text string being searched. It can be any text string
enclosed in quotes. You can also use a text-string variable or string expression as
this parameter. Only text-string values are allowed.

Note that blanks and punctuation marks are counted as character positions.

2. The sought string is the text for which you are searching the master string.
The sought string can be any text string enclosed in quotes. You can also use a
text-string variable or string expression as this parameter. Only text-string values
are allowed in the INSTR function.

3. The starting position, which is optional, is a number representing the
character position in the master string where you want to begin the search. The
default is the first position in the master string. Once you have found one instance
of the sought string, you can search for another by issuing another INSTR
command using the location of the found string + 1 as the starting position.

Examples:

Examples:

84 The BASIC Language

10 A$ = "THE LAST STRAW”
20 PRINT INSTR(A#$, "ST”)

RUN
7 The sought string is found starting at
character position 7.
PRINT INSTR(A$, "ST”,8) Using 7 + 1 as the starting location,
10 another instance of the sought string is
found at character position 10.
INT Abbr. none
INT (number)

Truncates a number with decimal parts into a whole integer number. The INT
function simply ignores the decimal parts of the number; INT does not round the
number. This means that the result is always less than or equal to the original
number. For example, INT(9.9) is 9, not 10.

When the number is negative, the result is also always less than or equal to the

-number. In the case of negative numbers with a decimal value greater than .0, INT

returns the next lowest integer. For example, INT(-5.1) is -6.
The INT function is often used with the RND (random number) function to
generate random whole numbers. See the RND function.

number in parentheses

The number can be any number, positive or negative. You can also use a
calculation or variable as the number.
Note: To round off a number, X, use INT (X+.5)

PRINT INT(-5.0)
-5

PRINT INT(2.2+3)
6

Joy Abbr. jO

~ JOY (port number)

Finds the status of either joystick. Use JOY(1) to examine the status of the
joystick injoy port 1; use JOY(2) to examine the status of the joystick in joy port
2. .

The JOY function reads nine different joystick positions, which are numbered
0 through 8. Nine additional readings, numbered 128 through 136, are displayed
when the fire button is also being pressed. The readings are shown in Table 1-5.

Examples:

Parameters:

Examples:

BASIC Version 3.8 Commands, Functions, and System Variables 88

TaBLE 1-5. Joystick readings

Left Left Right Right

&up Left & down Down & down Right &up Up Middle
No FIRE
BUTTON 8 7 6 5 4 3 2 1 0
WITH FIRE

BUTTON 136 135 134 133 132 131 130 129 128

PRINT JOY(1)
4 Joystick 1 is positioned down and to the right. The fire
button is not being pressed.
PRINT JOY(2) '
134 Joystick 2 is positioned down and to the left. The fire
button is being pressed.
KEY Abbr. KE

KEY number, definition

Defines a function key and can also display an up-to-date list of the function
key definitions.

Display alist of each function key definition by typing the command KEY and
pressing the RETURN key. Do not add any parameters.

Redefine a function key by supplying values for the following parameters:

key number, definition

1. Type the key number of the key you are redefining. You must follow it with
a comma. If you are just displaying a list of key definitions, omit this parameter.

2. Type the key definition as a text string. You can use BASIC functions and
any non-BASIC word in quotes. For a compound definition, join the strings with
plus signs (+). '

Put the command in quotes. Add +CHR$(13) if you want an automatic
RETURN at the end of the definition. Add +CHR$(34) if you want to use
quotation marks.

KEY Lists the current key definitions.
KEY 2,"GRAPHIC 2,1”+CHR$(13) Defines key 2 to execute a GRA-
PHIC 2,1 command.

KEY 3,”INPUT”+CHR$(34) Defines key 3 to display INPUT”
on the screen.

Examples:

86 The BASIC Language

Defining a Function Key for Program Input

The function key definition procedure can also be used in a program. INPUT can
be used to accept function key definitions. Of course, the input must end with a
RETURN character from the definition or the keyboard. GETKEY receives only
the first letter of the definition. Also, if GETKEY is called a second time following
the receipt of a multiple character function key definition, an error results.

To be able to use a function key in a GETKEY command, you must first
redefine the key as a single CHRS code. This definition allows BASIC to consider
the function key as a single key not a string of characters. Once the key is defined
as a single key, you can press the key as input fora GETKEY command. Then you
can use an IF command to see if the key pressed equals the CHRS code for the
function key and use a THEN clause to perform the desired operation(s). The
following example redefines function keys 1 and 2 as CHRS codes 133 and 137
(these are the CHRS codes used for the function keys on the Commodore 64).

Note that redefinitions written in a program are still in effect when the program
ends. To restore the original definitions, press the reset button.

5 REM DEFINE KEYS 1 AND 2 AS CHR$ CODES 133 and 134

10 KEY1,CHR$(133): KEYR,CHR$(134)

20 GETKEYZ$: REM PRESS F1 OR FR

25 REM USE ASC TO CHECK THE CHR$ CODE FOR THE PRESSED
KEY

30 IFASC(Z$)=-133 THEN PRINT"DRAW A CIRCLE”:X-1

40 IFASC(Z$)=134 THEN PRINT"DRAW A DIAMOND":X=360/4

50 GRAPHIC1,1 '

60 CIRCLE,160,100,60,50,,,X

In this example keys 1 and 2 are redefined to be YES and NO and can be used as
input in line 40. ' '

10 REM DEFINE KEYS 1 AND 2 AS YES AND NO

20 KEY 1,"YES"+CHR$(13)

30 KEY 2,"NO"+CHR$(13)

40 INPUT "WANT TO SEE THE KEY DEFINITIONS”;A$
50 IF A$ = "YES” THEN KEY |
60 IF A$ = “NO” THEN PRINT "OKAY"

LEFTS Abbr. leF
LEFTS (string,length)

Truncates the string in parentheses to the specified length. LEFTS$ is used
frequently to check input, particularly to check just the first letter of the input.

BASIC Version 3.5 Commands, Functions, and System Variables 87

Parameters: string being truncated, number of characters to use

Examples:

 Examples:

1. The master string can be any text string, text-string variable, or string
expression. .

2. The LEFTS result always begins at the leftmost character in the master
string. You can keep as many characters as you want. If the length specified is
longer than the master string, the whole string is returned.

PRINT LEFT$("GRADUAL" 4)

GRAD

PRINT LEFT$("RED” 4) The string contains only
RED : three characters, so only

three are printed.

10 INPUT "DO YOU WANT TO CONTINUE"; A$Checks text string AS,
20 IF LEFT$(A$,1)="Y” THEN GOSUB 70: input in line 10, for the

ELSE END : string Y.
LEN Abbr. none
LEN (string)

Counts the number of characters in a text string.

master string

The master string can be any text string, text-string variable, or string expres-
sion. Blank spaces and punctuation count as characters.

PRINT LEN(“HAYWIRE") '
v

10 INPUT “"WHAT’S YOUR LAST NAME"; L$ Checks the length of
20 IF LEN(L$) > 8 THEN L$ = LEFT(L$,8): L$ and used only the

PRINT “YOUR NAME HAS BEEN eight leftmost char-
SHORTENED” acters if the length is
30 PRINT L$ over eight.
RUN

WHAT'S YOUR LAST NAME ? MACDONALDSON
YOUR NAME HAS BEEN SHORTENED
MACDONAL

Parameters:

Examples:

Examples:

88 The BASIC Language

LET Abbr. 1E
LET variable = expression

Makes a variable equal to a value. The word LET may be (and usually is)
omitted from the command. The LET command is unique in that its main
keyword is optional.

variable = value

1. The variable type must match the type of value being assigned (e.g., if the
value is a text string, the variable must be a text-string variable).

If you want to assign more than one variable per line, separate the assignments
with colons.

2. The value can be another variable (X = Y), a calculation (X = X + 10), or a
constant value (X = 18). A variable can be equal to a calculation, including a
formula containing the variable itself and another value.

The value for a variable can change during the program.

10 LET X = 4/23*Y Assigns the value 4/2*Y to X.

20 N$ = "NAME” Assigns the text string NAME to N§.

30 X% =X% +A Gives X% the value of the answer to X% + A.
40 A=4:B=5 Assigns the value 4 to A and the value 5 to B.
LIST Abbr. II

LIST line number-line number

Displays a copy of a BASIC program or BASIC program lines.

: line number—Iline number

Line numbers are optional. If you omit them, the whole program is displayed.
If you want to list just one line, type LIST and the line number. If you want to list
just part of the program, type the first and last lines you want to display.

If you want to list the beginning of the program, type LIST followed by a dash
and the last line number you want to display. If you want to list the end of the
program, type LIST followed by the first line you want to see and then a dash; do
not add any ending line.

LIST. Displays all the lines in the current program.
LIST R0 Displays line 20 from the current program.

LIST- 100 Displays the beginning of the program up to line 100.
LIST 80- Displays the program from line 50 on.

BASIC Version 3.8 Commands, Functions, and System Variables 89

LOAD Abbr. 10
LOAD file name, device, relocate

Retrieves a program from a cassette tape or from a disk and loads it into
memory. Use LOAD for tape programs and nonrelocated disk loads. Use
DLOAD for loading BASIC programs from the disk. For more information see
Chapter 6.

LOADing a Tape Program

After youissue a LOAD command for a tape program, the computer tells you to
PRESS PLAY ON TAPE.

1. Insert the tape.

2. Press the REWIND button to rewind the tape completely when necessary.
Press the STOP button when the tape is rewound.

3. Type LOAD “program name”; the program name is the name of the
program you want to load. When you load the first program (after rewinding) or
the next program on the tape, you do not have to include the program name; the
computer automatically loads the next program on the tape. 4

4. Press the RETURN Key. The message PRESS PLAY ON TAPE appears
on the screen. '

5. Pressthe PLAY button. The screen goes blank. When the program is found,
the following message is displayed:

FOUND program name

6. Press the key (or wait a moment). The screen goes blank. When the
loading procedure is finished, the READY prompt is displayed.

7. Type RUN and press the RETURN key to execute the program.

Note: Be sure to press the right buttons on the cassette recorder. The computer
knows when to wait for a button to be pressed but does not know which button
was pressed. If you press the wrong button and the computer “freezes,” eject the
tape, press the computer’s reset button, and repeat the loading procedure.

Note: Foranonrelocated LOAD, use LOAD “program name”, 1,1. Programs
can be saved so that a nonrelocated LOAD is always performed. See SAVE.

See the VERIFY command for a quick method for searching a tape for a
program.

LOADing a Disk Program

Although it is easier to load disk programs with the DLOAD command, you can
also use LOAD. You must use LOAD to do a nonrelocated load from disk. When
you use LOAD with disk programs, you must include the disk drive device
number.

Parameters:

Examples:

60 The BASIC Language

After you issue a LOAD command for a disk program, the computer displays
the message OK SEARCHING. When the program is loaded, the message
(program name) FOUND is displayed, with the program’s name displayed. Type
RUN to execute the program. '

“file name”, device number, relocate flag

1. You must include the name of the file or use wild cards to get the first
program whose name matches. Enter the name in quotes. Youcanuse a variable
name in place of the file name. The variable must have a value. It may be in
parentheses (not in quotes). The only time this is likely to be useful is when you
load a program from within another program.

2. Device number is 1 for cassette recorder, and 8 for disk drive. The default
value is 1, so you can omit this parameter if you are loading from a cassette tape.

3. You are unlikely to use the relocate flag except for machine-language
programs. A flag of 0 tells the computer to load the program at the beginning of
the BASIC program area, and 1 loads the program at the memory location from
which it was saved.

Note: For disks, only program-type files can be LOADed.

Note: In program mode, a RUN command (with no CLR) is automatically
issued following a LOAD operation. For example, you may want to LOAD a
machine language subroutine from BASIC.

10 IF L-0 THEN L-1 : LOAD “file”,8,1

The LOAD is executed only once, and the program continues.

LOAD Loads the next program on tape.

LOAD “SHAPES3",8 Loads file SHAPES3 from disk.

90 LOAD (Y$) Loads a file from tape. The name of the file is the
: current value of YS$.

LOCATE Abbr. 1oC

LOCATE coordinates

Repositions the pixel cursor on a graphic mode screen. The invisible pixel
cursor marks the final point of the previous drawing and the default beginning
point of the next drawing.

Parameter Values
Coordinates
Column coordinate
High-res modes 0-319
Multicolor modes 0-159

Row coordinate 0-199

Example:

Parameter:

Examples:

BASIC Version 3.8 Commands, Functions, and System Variables 61

Give the coordinates of the point on the graphic screen where you want the
pixel cursor to be moved. The next drawing will use this point as its starting point
unless the drawing command gives some other starting point. For more informa-
tion, see Chapter 4.

10 GRAPHIC 4,1

20 LOCATE 30, 25 Puts the pixel cursor at column 30, row 25.

30 DRAW TO 60,50 Draws a line from the current pixel-cursor location
to column 60, row 50.

LOG Abbr. none
LOG (number)

Finds the natural logarithm of a number. LOG returns the log base e (e = the
mathematical constant, approximately 2.71828183) of the number in paren-
theses. Divide by LOG(10) to get the log base 10. For more information, see the
Mathematical Calculations section of Chapter 3.

any numeric expression with a positive value

PRINT LOG(R) Prints the natural logarithm of 2.
693147181

PRINT LOG(2)/LOG(10) Prints the logarithm base 10 of 2.
301029996 -

LOOP Abbr. 100
Works with DO to set conditions for a repeated sequence of program lines. See
DO.
MIDS$ Abbr. ml
MIDS (string, start position, length)

Gets a substring of the specified length within a master text string. MIDS starts
the substring at the character position specified. MIDS$ can also be used to change
part of a text string.

: master string, starting position, number of characters to use

1. The master string can be any text string, text-string variable, or string
expression.

2. The substring is begun at the starting position; characters that come before
the starting position are not used. The starting position can be any character
position in the master string. If it is greater than the length of the master string, a
null string is returned.

Examples:

63 The BASIC Language

3. The length of the substring can be any length. If it is greater than the number
of characters after the start position in the master string, the entire rest of the
string is returned. The length can be omitted. If it is omitted, all of the string after
the start position is returned.

MIDS$ can also be used on the left side of an equation to replace asubstring of a
given length within the master string.

PRINT MID$("GRADUATE",6,3)

ATE

10 INPUT “ENTER THE NEXT MODEL"; A$ Examines five char-
20 IF MID$(A$,6,5)<>"WAGON” THEN END acters starting at

30 MID$(A$,6,5)="SEDAN": PRINT A$ character 6 for the
RUN string WAGON.
ENTER THE NEXT MODEL ? 4-DR WAGON WAGON is replaced
4-DR SEDAN ‘by SEDAN.

PRINT MID$(”ROCKETSHIP”,7)

SHIP

MONITOR Abbr. mO

Leaves BASIC and goes to the built-in machine-language monitor. You can
use the 13 machine-language monitor commands to write and execute programs
in machine language. Return to BASIC from the monitor by typing X and
pressing the RETURN key. See Chapter 5 for more information on machine
language.

NEW Abbr. none

Erases the current program from memory. The program cannot be recalled
unless it is saved on tape or disk. (If you execute a NEW accidentally and want to
try to retrieve your program, see Chapter 3 for information on unNEWing.)
Always issue a NEW command before you start writing a new program to be sure
the program area of memory is clear. If you do not clear the memory, lines from
the previous program will mix with your current program.

NEXT 'Abbr. nE

4

Marks the closing bracket of a FOR loop. See FOR.

Parameters:

Example:

BASIC Version 3.8 Commands, Functions, and System Variables 63

ON...GOSUB Abbrs. on/goS
ON number GOSUB line number, line number, etc.

Branches the program to one of a list of subroutines. The selection is based on
the condition of the ON value and the position of the subroutine line numbers in
the GOSUB list.

Each time ON . . . GOSUB executes, only one of the line numbers in the
GOSUB list is used. When the ON value equals 1, the computer goes to the first
subroutine in the GOSUB list. When the ON value equals 2, the computer goes to
the second subroutine in the GOSUB list, and so on.

ON value GOSUB subroutine line number list

1. The ON value can be a variable or a calculation. It cannot be a negative
number. If it is equal to zero or a number that is greater than the number of
subroutine line numbers in the GOSUB command, no subroutine is executed. If it
is not a whole number, its truncated value is used. For example, if there are four
subroutine line numbers in the GOSUB command (e.g., ON number GOSUB 40,
70, 100, 130), the number must be greater than or equal to 1 and less than 5 for a
subroutine to be executed.

2. The ON value selects a subroutine line number from the GOSUB list based
on its relative position in the GOSUB list.

1@ INPUT "DO YOU WANT TO DRAW A TRIANGLE, SQUARE, OR PENTAGON"; S$
12 REM USE INPUT FROM LINE 1¢ TO SET NUMBER OF SIDES

15 s$ = LEFT$(S$,1) : X = 3 : IF 8$ = """ GOTO 20

16 X =4 : IF SS = "S" GOTO 20

17 X =5 : IF S$ < "P" GOTO 10

20 INPUT “DO YOU WANT THE SHAPE TO BE RED, BLUE, OR GREEN"; CS$
30 REM USE INPUT FROM LINE 20 TO SET COLOR IN LINE 60

40 IF LEFTS(CS,1) "R" THEN C = 3: GOTO 60

50 IF LEFTS(CS,1) "B" THEN C 7: ELSEC = 6

60 COLCR 1,C,3

80 GRAPHIC 2,1

85 REM 2 IS SUBTRACTED FROM NUMBER OF SIDES i

86 REM WHEN X=3, 3-2=1, SO PROGRAM GOES TO FIRST SUBROUTINE, ETC.
90 ON X-2 GOSUB 140, 180, 210 :
100 REM AFTER SUBROUTINE, PROGRAM RESUMES AT LINE 110

110 INPUT "WANT TO DRAW ANOTHER SHAPE"; AS

120 IF LEFTS$(AS,1) = "N" THEN GRAPHICCLR:END: ELSE 10

130 REM BEGIN SUBROUTINE TO DRAW TRIANGLE

1490 CIRCLE, 160¢,100,60,54,,,,120

150 PAINT, 160,100 ‘

160 RETURN

170 REM BEGIN SUBROUTINE TO DRAW SQUARE

180 BOX, 10¢,50,220,15¢,,1

190 RETURN

200 REM BEGIN SUBROUTINE TO DRAW PENTAGON

210 CIRCLE, 169,1090,60,50,,,,72

22¢ PAINT, 160,100

230 RETURN

[}
nou

Parameters:

Example:

64 = The BASIC Language

ON...GOTO Abbr. on/g0
ON number GOTO line number, line number, etc.

Branches the program to one of alist of line numbers. The selection is based on
the condition of the ON value and the position of the line numbers in the GOTO
list.

Each time ON ... GOTO executes, only one of the line numbers inthe GOTO
list is used. When the ON value equals 1, the computer goes to the first line
number in the GOTO list. When the ON value equals 2, the computer goes to the
second line number in the GOTO list, and so on.

ON...GOTO issimilar to IF... GOTO, but ON lets you mclude a series of
GOTO lines while IF lets you include only one.

ON value GOTO line number list

1. The ON value can be a variable or a calculation. It cannot be a negative
number. If it is equal to zero or a number that is greater than the number of line
numbers in the GOTO command, no GOTO is executed. If it is not a whole
number, its truncated value is used. For example, if there are four line numbers in
the GOTO command (e.g., ON number GOTO 40, 70, 100, 130), the number must
be greater than or equal to 1 and less than 5 for a GOTO to be executed.

2. The ON value selects a line number from the GOTO list based on its relative
position in the GOTO list.

10 TRAP 130

20 INPUT “WHAT YEAR (1985-1994)";Y
30 PRINT "NEW YEAR’'S DAY FALLS ON “;
40 ON Y-1984 GOTO 70,80,90,100,120,60,70,80,100,120
50 PRINT”INVALID INPUT”:GOTOR0

60 PRINT”MONDAY":END

70 PRINT”TUESDAY”:END

80 PRINT"WEDNESDAY"”:END

90 PRINT"THURSDAY":END

100 PRINT"FRIDAY”:END

110 PRINT”SATURDAY":END

120 PRINT”SUNDAY”:END

130 RESUME 50

OPEN Abbr. oP
OPEN file number, device, secondary address, file name

Opens access to a peripheral device or to a tape or disk file. Devices and files
must be OPENed before you can issue other commands (such as INPUT# or
PRINT#) to them. You do not have to use OPEN before you load or save a
program.

BASIC Version 3.8 Commands, Functions, and System Variables (1]

Parameters: logical file number, device number, secondary address, “file name”

1. The logical file number can be from 1 to 255. Normally, use 1 to 127. For
some devices, 0 is a valid logical file number. Logical file numbers greater than
127 cause a line feed character to be sent after the carriage return at the end of
each line. Some non-Commodore printers or RS232 devices may require this.

The file number is not actually a part of the file or device you are opening. The
file number is just a temporary number used until you CLOSE the file. It gives the
computer a way to keep track of which device or file you are accessing. The file
number is like a number you take at a deli counter or laundry—it is associated
with you and your order only while your business is being transacted.

Once the device or file is OPEN, you must use the same file number for the
device or file when you address other commands to it. These other commands are
CLOSE, CMD, GET#, INPUT#, PRINT#, and PRINT# USING. Once the file
is CLOSEd, the logical file number is no longer associated with the file and you
do not have to use the same logical file number the next time you OPEN the file.

2. The device number identifies the other end (device or file) of the communi-
cation channel you are opening through the computer. If you are accessing a disk
file, use the disk drive device number; if you are accessing a tape file, use the
cassette recorder device number, and so on.

Use these device numbers:

0 keyboard

| cassette recorder
2 RS232 port

3 screen

4-5 printer (default is 4)
8-11 disk drive (default is 8)

3. The meaning of the secondary address depends on the device you are
accessing. ‘ ‘

® Foracassette recorder, there are three: 0 (read from tape), 1 (write to tape and
close with end-of-file marker), or 2 (write to tape and close with end-of-tape
marker). The default is 0.

® For a printer, you can use secondary addresses to send commands. For more
information, see Chapter 6 and the printer manual; these commands differ
according to printer brand and type.

® Foradisk drive, a secondary address names the channel being used. For more
information, see Chapter 6 and the disk drive manual. -

Examples:

68 The BASIC Language

4. Youcan use an optional name for the file on disk or tape. The file name can
be any 1 to 16 characters. If you intend to call the file by name, do it now because
you will not be able to later.

5. For disk flles, include in the quotation marks the optional type of file
following a comma. The types are P (program file), S (sequential file), L (relative
file), or U (user file). The default is sequential file. For more information, see
Chapter 6.

6. For disk files, an optional disk file mode (R for read, or W for write) can
follow the file type (still in quotation marks and separated from the type by a
comma). The default is read.

OPEN 4,4 : Opens communication to the printer so you
can print directly onto it.

OPEN 1,1,0,”"BOXES” Opens a tape file for reading from tape.

OPEN 8,8,15 * Opens the command channel to the disk drive.

' OPEN 1,84,”REC3,3,W” Opens a sequential file REC3 on a disk so you

can write data records to the file.

OPEN 44,0 Opens printer in upper case/ graphic mode.
OPEN 44,7 Opens printer in upper/lower case mode.
PAINT Abbr. pA

PAINT color source, coordinates, mode

Used in any graphic drawing mode to make the outline of a shape solid. The
shape is filled with color from the starting point until boundaries are met on all
sides. See Chapter 4 for more information on coordinates for PAINT.

Parameter Values Default
Color source 0-3 1
Coordinates pixel cursor
Column coordinate
High-res modes 0-319
Multicolor modes 0-159
Row coordinate 0-199
Boundary mode Oorl 0

1. The color source indirectly selects the painting color. There are five color
sources, but color source 4 (the border color) cannot be used in drawing com-
mands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color (default value)

Example:

Example:\

BASIC Version 3.5 Commands, Functions, and System Variables 67

2 multicolor mode extra color 1
multicolor mode extra color 2

4 screen border color
. ! '/\

The color source number you include in the PAINT command tells the
computer to draw in the current color for that source. For example, if you select
1, the computer paints in the current foreground color. If you want to use a color
other than one of the current source values, you must first use the COLOR
command to change one of the source values. Only sources 1 and 2 can be used to
draw with more than one color on the same screen. Sources 0 and 3 are global
(whole screen) colors.

If you want to use the default value (1, the current foreground color), you do
not have to type a number, but you must type a comma before the next parameter.

2. The coordinates tell the computer where to start painting. You can tell the
computer to start at any point within the space you want to paint. You never need
to include ending coordinates. The computer stops painting when the border is
reached. '

3. Boundary mode lets you choose whether to have the painting stop when it
reaches a border of the color source with which it is painting (select 0), or when it
reaches any nonbackground color (select 1). The default is 0. The other choice is
meaningful only in multicolor mode. '

Note: If the specified starting point was previously colored with a boundary
color, no painting will be done.

10 GRAPHIC 3,1 Draws a diamond and fills it in with
20 CIRCLE, 80,50,30,50,,,,90 the color in color source 3.

30 COLOR 3,12,4

40 PAINT 3, 80,50,1

PEEK : Abbr. pE
PEEK (memory location)

Finds the contents of any RAM location. The location must be between 0 and
65535. PEEK and POKE are complements and can be used together to place and
look at memory contents. Examining ROM using PEEK is not easy. See Chapter
4 (Copying the Standard Character Set) for one method.

POKE 3090,1 Displays an A at screen location 3090.
PRINT PEEK(3090) Prints the value of memory location 3090.
1

Parameters:

Example:

68 The BASIC Language

POKE : Abbr. pO
POKE memory location, number

Places a single value directly into a specific RAM location, such as each
position in the screen memory. Unless you are an advanced programmer, you are
unlikely to use this command.

memory location, value

1. Names the specific address of a memory location or input/output register.
The possible values are 0 to 65535. You can find specific addresses on the memory
map in Appendix G.

2. Gives the number (0-255) for the value you want to place in the memory
location. See the screen display chart in Appendix E for values that can be poked
to screen locations. These values are not the same as CHRS$ values.

10 SCNCLR

15 REM 3079 IS COL 7 OF ROW 1 ON SCREEN; 4071 IS BOTTOM
RIGHT CORNER

20 FOR X=3079 TO 4071 STEP 41

30 POKE X,0

25 REM PRINT AN @ SIGN AT 41-SPACE INTERVALS

40 NEXT X

50 FOR Y=3103 TO 4071 STEP 39

55 REM PRINT AN @ SIGN AT 39-SPACE INTERVALS

60 POKE Y,0

70 NEXT Y

POS Abbr. none
POS (number)

Finds the column in which the cursor currently resides. This is the column in
which the next item will be displayed by a PRINT command. The column
number is between 0 and 39. The number in parentheses is a dummy argument,
which means it does not mean anything. It is nonetheless required, and you
should just use POS(0). You can also find the column by using PEEK(202) and
the row by using PEEK(205).

PRINT Abbr. ?
PRINT output list

Displays the following types of information on the screen:

® Text entered in quotes

® Solutions to calculations

BASIC Version 3.5 Commands, Functions, and System Variables 69

® Values of variables or functions

Each PRINT command can contain one or more of these types of data. You
can use commas or semicolons to separate multiple PRINT items and to deter-
mine the format for output.

Parameters: “text message”
variable
calculation

All the parameters are optional. If no parameter is included, the PRINT
command prints only a carriage return. In most cases this results in a blank line
being PRINTed, but if the previous PRINT command ended in a semicolon, a
following PRINT with no parameters just goes to the next line. See the later
paragraph on using semicolons.

1. All text must be enclosed in quotes. Text messages are pnnted exactly as
they are typed. Calculations and variables typed inside quotes are also printed as
they are; PRINT does not attempt to find solutions for them when they are in
quotes.

2. When you tell the computer to PRINT a variable, the computer actually
prints the value the variable stands for, not the variable name. If no value has
been assigned to a numeric variable, a 0 is printed; if no value has been assigned to
atext-string variable, nothing is printed. Positive numeric values are printed with
a leading blank space; negative numeric values display the minus sign in front of
the number.

3. When you tell the computer to PRINT a calculation, the computer actually
prints the solution to the calculation. If the calculation contains a variable for
which no value has been assigned, the computer considers the variable to have a
value of 0 and solves the calculation accordingly.

Punctuation in PRINT Commands

You can separate multiple PRINT command items with commas or semicolons.
If you want to link the output from more than one PRINT command, you can
add a comma or a semicolon to the end of the first PRINT command. This
trailing punctuation tells the computer to treat the output as if it were from one
PRINT command instead of several.

Commas Force separate items into separate output zones of 10 spaces
each. Each new item begins in a new output zone, regardless
of how much space the previous item takes.

Semicolons Print separate items right next to each other. Numbers are
printed with one space or a negative sign in front and one
space behind. If you do not like this number format, see
PRINT USING or STRS for other options.

Examples:

Parameters:

70 The BASIC Language

PRINT “THE MEDIUM"
THE MEDIUM

PRINT 3/, 4+5, -2+
1.5 9 0

10 PRINT 3%10.2; 4-8;

15 REM SKIPTO THE NEXT LINE IF THE NEXT ITEM IS PAST COL 10
R0 IF POS(X)>10 THEN PRINT

30 PRINT 5+67.3

RUN

306 -4 7R3

10 INPUT “YOUR NAME AND AGE”; N$ A
20 PRINT N§;”, YOU ARE”; A
YOUR NAME AND AGE ? DAN

29 26
DAN, YOU ARE 26
PRINT# Abbr. pR

PRINT# file number, output list

Puts data values in an OPEN file such as printing information on a printer. Use
PRINT# to put values into tape or disk data files. To retrieve these data, use
INPUT# or GET#. When you use PRINTH# to tell the printer what to print, you
can use semicolons and commas to separate multiple data items, and they have
the same spacing effect as they have in PRINT commands.

When sent to a data file, a comma will cause a number of spaces to be sent and a
semicolon will place data items right next to each other. The data bytes are stored
in the file in the same format as they would be displayed on the screenin a PRINT
command. The format of the bytes written to a data file must be designed with the
method of retrieval in mind. If they are to be read one at a time by the GET#
command, any format is alright. However, if they are to be read by the INPUT#
command, care must be taken to store comma characters between values and
carriage return characters between lines of input.

logical file number, variable(s) or value(s)

1. The file number is a logical file number that links the file or device to other
commands, including the OPEN command that accesses the device or file before
it can be used. See OPEN for more information on logical file numbers.

2. The variable type must match the type of value to be written (e.g., if you are

* writing text values, you must use text-string variables). If the PRINT# command

contains multiple variables, separate them with commas or semicolons.

Example:

Parameters:

BASIC Version 3.5 Commands, Functions, and System Variables 71

10 OPEN 1,8,4,”SORT,S,W" Opens a disk file.
30 INPUT "HOW MANY NAMES TO ENTER";T

40 FORX-1TOT

50 INPUT "NEXT NAME”; A$

60 PRINT#1,A$;",”; Puts the value input
70 NEXT X in line 50 into the
80 CLOSE 1 disk file SORT.
Closes the disk file.

NEW
10 INPUT “STAFF TO RECEIVE MEMO”; A$
20 OPEN 44 Accesses printer.

- 30 PRINT#4,”MEMO” Prints to printer.
40 PRINT#4,”TO ALL ";A$;” STAFF MEMBERS”
50 CLOSE 4
PRINT USING or PRINT# USING Abbrs. ?usl/pR/usl

PRINT USING format; output list
PRINTH# file number, USING format; output list

Allows you to design a format for any type of output—text or numbers. You
can use up to nine symbols to define how you want printed material to appear.
The PUDEF command lets you replace up to four of the PRINT USING
symbols.

#logical file number, “format description”; items to be printed

1. Include afile number and # sign if you are writing to an OPEN file or device.
Omit this parameter if you are not writing to a file or device.

2. The format description can contain any of the followmg nine symbols. The
format must be enclosed in quotes.

Symbol Meaning

Represents any one character. If the item to be printed is longer
than the number of #s in the format, and the item is numeric, an
error occurs and *s are printed instead of numbers. If the item is
text, only as many characters of text as there are #s are printed.

, Prints a comma in numbers, which you cannot ordinarily do.
Place the comma in the format in the same position in which it
will appear in the number to be printed.

. Prints a decimal point in numbers. Only one decimal point can
appear per number to PRINT.

$ Prints a dollar sign. If you want the § to appear right next to any

73 The BASIC Language

number, place a # before the $ in the format. Otherwise, the §
does not “float” to a position next to the number (e.g., § 3.50
instead of $3.50).

+ . Displays a plus sign at the beginning or end (but not both) of a
number. If the number to be printed is negative, a minus sign is
displayed in the place designed for the plus sign.

- Displays a minus sign at the beginning or end (but not both) of a
number. If the number to be printed is positive, no sign is
displayed.

If you include no sign in the format, and the number is nega-
tive, a minus sign is displayed at the beginning of the number and
before a dollar sign, if one is included. If the number is positive,
no sign is displayed, but the space for the sign may be used to
display an extra digit in the number.

et Prints the number in scientific notation (e.g., 2E-04). The up
arrows must be preceded by a number sign (#).

= Centers text output in the format field (e.g., if the format field is
"=, and the text to be printed is TEST, TEST is printed
two characters to the right, centered in an eight-character field,
with the = sign counting as a character space).

> Right-justifies text output. If the text to be printed is shorter than
the output format, the text is printed right-justified instead of
left-justified.

Note: If numbers are longer than the format for numeric output, the number is
not printed. Instead, * symbols are printed. If a text string is longer than the
format for text output, as many characters of the text are printed as there are
spaces in the format (e.g., if there are six places in the format and the item to be
printed is SCHOOLHOUSE, SCHOOL is all that is printed).

3. Theitems to be printed can be text or numeric, and they can be variables or

‘formulas. List these items at the end of the PRINT USING command, separated
from the format by a semicolon. Multiple items to be printed must be separated
by commas.

Using Trailing Semicolons to Control Output from Multiple Commands

If you want the output from the next PRINT or PRINT USING command to
appear on the same line as the last output, put a semicolon at the end of the list of
items to be printed. This trailing semicolon has the same effect on output as a
trailing semicolon in a PRINT command has.

Exdmples:

BASIC Version 3.8 Commands, Functions, and System Variables 73

Note, however, that while a PRINT command can end in either a trailing
semicolon or a trailing comma, a PRINT USING command can end only in a
trailing semicolon. Also, while PRINT command items can be separated by
either commas or semicolons, only commas are allowed as item separators in a
PRINT USING command. The PRINT USING command allows more control
over output because the format definition determines exactly how the output
looks, so there is no need for semicolons as separators in a PRINT USING

command.

10 INPUT “ITEM”; 1$

20 INPUT "PRICE”; P

25 REM PRINT UP TO 12 LETTERS

30 PRINT USING "###########", 1§,
35 REM PRINT THE PRETAX PRICE
40 PRINT USING "#§## ### ##", P

50 PRINT USING "#####”;, “"TOTAL",

58 REM PRINT THE PRICE PLUS TAX
60 PRINT USING "#$## ### ##"; Px1.06
RUN

ITEM? VIDEO EQUIPMENT

PRICE? 1299.99 '

VIDEO EQUIPM $1,299.99

TOTAL $1,377.99

RUN

ITEM? YACHT

PRICE? 1000000.99
YACHT ook kR KAk K
TOTAL***kk ks

NEW
10 INPUT "TITLE”; A$

20 INPUT "NAME”; B§ .
25 REM CENTER TITLE AND NAME

The # before the $
forces the § to be
printed right next to
the first digit. With-
out the leading #,
blanks appear
between the $ and
any unused digits in
the format.

VIDEO EQUIP-
MENT is longer than
the 12 letters allowed
by the format, so it is
truncated.

On this run, the
number of digits
entered for the price
is greater than the
number accepted by
the format, so the
field is filled with

* symbols. Words
that are too long are
truncated; numbers

30 PRINT USING "=#################",A$ that are too long are
40 PRINT USING "=#################",B$ not printed at all.

RUN
TITLE? TRAINING CATS
NAME? JANE SMITH
TRAINING CATS
JANE SMITH

Examples:

74 The BASIC Language

PUDEF Abbr. pU
PUDEF “one to four characters”

Lets you replace with any other symbol the symbols displayed by subsequent
PRINT USING commands. You can replace blanks, commas, decimal points,
and dollar signs from PRINT USING commands that follow the PUDEF
command. You can issue as many PUDEF commands as necessary to print
formatted data according to your special purposes.

Characters are replaced by their position in the PUDEF command. The
default values for each position are used if you do not specify a different character
in the appropriate position.

Parameter Values Default

First Any character Blank space
Second - Any character Comma
Third Any character Decimal point
Fourth Any character Dollar sign

When you want to replace all the blank spaces in the output printed by a
PRINT USING command, put the replacement character in the first position in
the PUDEF command. When you want to replace commas, put the replacement
character in the second position, and so on. ,

Because the computer recognizes replacement characters by position, you
must type the default values in their positions if the following two conditions are
true: :

® You are not changing the default values.

® They appear in the PUDEF format before the characters you are changing.

If the default values appear after the changes, you can omit the defaults and
just end the command. For example, if you want to leave blanks and commas
when you change decimal points, you must place a blank and a comma in their
positions in the PUDEF command and then type the decimal point replacement
in the third position. '

90 PUDEF“/,” Replaces blanks with slashes and decimal points with
apostrophes. Commas and dollar signs are
_ retained.
75 PUDEF” .bA" Replaces commas with decimal points, decimal
points with lowercase b’s, and dollar signs with A’s.
Blanks are retained.

Examples:

BASIC Version 3.8 Commands, Functions, and 8ystem Variables 78

RCLR Abbr. rC
RCLR (color source)

Finds the number of the color currently assigned to any of the five color
sources:

screen background color

foreground color

0

1

2 multicolor mode extra color 1

3 multicolor mode extra color 2
4

screen border color

Type the number of the color source in parentheses. Only the color number is
found. If you want to find the luminance, use the RLUM function.

PRINT RCLR(1) Prints the number for the current foreground color,
3 which is 3, red.

PRINT RCLR(3) Prints the number for a current multicolor extra

12 color, which is 12, pink.
RDOT Abbr. rD
RDOT (mode)

Finds one of three pieces of information about the condition of the pixel cursor
by typing one of the following values for mode:
0 returns the column coordinate
1 returns the row coordinate
2 returns the color source
The color source tells you with which of the four possible color sources the dot
at the pixel cursor location is drawn:
0 screen background color
1 foreground color
2 multicolor mode extra color 1
3

multicolor mode extra color 2

Drawings cannot be made in the fifth color source, which determines the color

Examnples:

76 The BASIC Language

of the screen border. If you want to find the number of the color in the color
source, use the RCLR function.

READ Abbr. rE
READ input list

Always paired with DATA commands, one of several ways to assign data
values within a program. READ contains alist of variables, and DATA contains
a list of values. READ gets a value from a DATA command for each of its
variables. You cannot input data from the keyboard for READ commands.

The program must contain enough DATA values for the READ variables. If
there are not enough values, the program is aborted and an OUT OF DATA
ERROR message is displayed. However, the total number of DATA values in all
DATA commands is what counts, not the number of values per DATA com-
mand. When one DATA command runs out of values, READ automatically
looks for the next DATA command in the program. DATA commands do not
have to precede READ commands.

You can reREAD DATA values after you use the RESTORE command to
reset the data pointer to the beginning of a DATA command. See RESTORE.

: variable(s)

The READ variables and the value types in the DATA commands must match
(e.g., only text strings can be assigned to text-string variables). Variables must be
separated by commas.

10 DATA 55,44,33

20 READ A,B,C,D The program must have at least
40 PRINT A,B,C,D as many DATA values as READ
RUN variables.

?0UT OF DATA ERROR IN 20

NEW

10 DATA MONDAY, MARCH, 18TH

20 READ A$,B$

30 READ C$X

40 PRINT A$,B$,C$

50 DATA 1985

60 PRINT B$§;X

RUN :
MONDAY MARCH 18TH

MARCH 1985

Example:

BASIC Version 3.8 Commands, Functions, and System Variables (44

70 RESTORE Resets the data pointer to begin-
ning of line 10.

80 READ A Reads first DATA item in line 10.

RUN ' Line 80 reads a text value for a

?TYPE MISMATCH ERROR IN 80 numeric variable.

REM Abbr. none

REM remarks

Contains comments explaining program lines. REMarks make the program
easier to understand when any user reads the program lines. If your program is
longer than just a few lines, you should include REMarks so your program is well
documented. Because REM statements are ignored by the computer, they can
contain anything.

remark

The remark does not need to be enclosed in quotation marks.

Note: In most BASIC lines, shifted characters are allowed only for abbrevia-
tions or in quotes. In a REM statement, shifted characters are fine until the
program is LISTed. The computer treats a shifted character as a BASIC token
and prints, not the character, but the BASIC keyword it corresponds to (see
Appendix B for a token list). This is very annoying. If you want shifted characters
in a REMark, put them inside quotes to avoid this problem.

10 REM PRINT A GREETING WITH THE USER’'S NAME
20 INPUT "WHAT'S YOUR NAME”; N$
30 PRINT “HELLO, ”; N§; ”, WHAT'S NEW?"

RENAME Abbr. reN
RENAME Ddrive, old file name TO new file name, ON Uunit

Replaces the name of a disk file. The file itself is not affected.

: D drive number, “old name” TO “new name”, U unit number

1. Give the number of the drive containing the disk whose file you want to
rename. Drive numbers are either 0 or 1; no other numbers are allowed. The
default value is 0. This parameter is optional. If you are using a single drive, leave
out the drive number.

2. Always list the file’s current name first. Be sure to put it in quotes.

3. TO is part of the RENAME command and must be included.

4. Enclose in quotes the new name you want to give the file.

5. U unit number is an optional parameter. Use it only if you have more than

Examples:

Examples:

78 The BASIC Language

one disk drive connected to your computer and you are using a device other than
unit 8 in the RENAME procedure. You must precede the unit number with U,
and the unit number must be between 8 and 11. You can type ON before U, but
ON is not required.

Note: The drive and unit number parameters and the file names can be
specified with a variable or expression in parentheses.

RENAME D1, "OLD” TO "NEW” Changes the name of file OLD to
NEW.

RENAME “TESTSORT” TO “SORT1” = Changes file TESTSORT to

. SORTI.

RENUMBER ' - Abbr. renU

RENUMBER new start line number, increment, old start line number

Renumbers lines in the current BASIC program. This command can be
executed in immediate mode only; you cannot include it in a program.

Parameter Values Default

New first line number Any legal number* 10

Increment between lines Any legal number* 10

First line number to be Any line number in the First line in the
renumbered program program

*Renumbering must not force line numbers to exceed the highest line number allowed, which is
63999, or strange results will occur.

1. Regardless of what numbering scheme is used in the current program, you
can choose any new first line number. If you omit this parameter and thereby use
the default, you must type a comma in place of the parameter in the command.

2. The increment tells the computer how many numbers to skip between line
numbers. Even if the current line numbers are erratically spaced (e.g., 10, 15, 18,
20, 30, etc.), the RENUMBER command changes all line numbers so they are
evenly spaced (e.g., 10, 20, 30, 40, 50, etc.). If you omit this parameter, type a
comma in its place.

3. Youcan give any number in the program as the first line to be renumbered.
This parameter lets you choose a line other than the first one in the program to
begin renumbering.

RENUMBER 100 Makes 100 the new first line
number. The defaults for incre-
ment and first line number to be
renumbered are accepted.

Parameter:

Example:

BASIC Version 3.8 Commands, Fur:ctions, and System Variables 79

1 REM POLYGON PROGRAM

10 INPUT "HOW MANY SHARES”;T
15 COLOR 1,9,5

20 GRAPHIC 1,1

30 CIRCLE, 160,100,60,50,,,360/T
45 PAINT, 160, 100

RENUMBER 25, 20, 10 Begins at line 10 to renumber in
increments of 20. The first new
line number is 25.

LIST

1 REM POLYGON PROGRAM

25 INPUT "HOW MANY SHARES”;T

45 COLOR 1,9,8

65 GRAPHIC 1,1

85 CIRCLE, 160,100,60,50,,,,360/T

105 PAINT, 160, 100

RESTORE Abbr. reS
RESTORE line number

Resets the data pointer that keeps track of the last item READ in a DATA
command. Once the DATA command is reset, the values in the DATA command
can be assigned again to READ variables. RESTORE does not affect READ
commands or any other commands. You can reset to the beginning of the first
DATA command in the program or to any DATA command in the program.

line number

The line number parameter is optional. If you omit it, the pointer returns to the
first DATA item in the first DATA command. If you specify a line number, the
pointer is reset to the first DATA value in the first DATA command after that
line. Data in previous DATA commands would not be reused.

10 DATA 1,23,3 The RESTORE command in line 50 resets
20 DATA 7,8,9 the DATA pointer to the beginning of line
30 READA,B,C,D,E, F 20. The READ command in line 60

40 PRINTA; B;C; D, E; F reREADs the DATA values in line 20.
50 RESTORE 20
60 READ A, B,C
70 PRINTA; B; C
RUN
1 3 3 7 8 9
7 8 9

Parameters:

Examples:

80 The BASIC Language

RESUME Abbr. resU
RESUME line number
RESUME NEXT

Works with the TRAP command, which catches program errors. Use
RESUME to return to the current program after an error is found by a TRAP
command. RESUME works only in conjunction with TRAP; RESUME cannot
continue program execution unless the program is suspended by a TRAP
command.

line number or NEXT

1. Ifyouissue a RESUME command with no parameter, execution resumes at
the line where the error occurred. The computer will then try to execute this line
again.

2. If you include a line number after the RESUME command, the program
goes to that line and resumes execution there. Any line number that appears in the
program can be used. If you use a line number, do not also type NEXT.

3. If you type NEXT, the program resumes execution at the line after the one
that contained the error. The erroneous line is not reexecuted. If you use the
NEXT parameter, do not also use a line number parameter.

RESUME Q50 Restarts the program at line 250.

RESUME NEXT Resumes execution at the line following the one that
contains the TRAPped error.

RETURN Abbr. reT

Ends a subroutine and returns program execution to the line after the last

| GOSUB command. RETURN is always paired with a GOSUB command. See

GOSUB.
RGR Abbr. rG
RGR (number)

You can find the number of the current graphic mode:

text/ graphic
high-resolution
split-screen high-resolution

multicolor

A W N = O

split-screen multicolor

EXa.mple:

Examples:

BASIC Version 3.5 Commands, Functions, and System Variables 81

The number in parentheses is a dummy argument, which means it does not
mean anything. It is nonetheless required, and you should just type RGR(0).

PRINT RGR(O)
2 The current graphic mode is split-screen high-res.
RIGHTS Abbr. rl

RIGHTS (string, length)

Returns a substring of the designated string with the specified length. RIGHT$
is used frequently to check the end of an input string.

: master string, number of characters to use

1. The master string can be any text string, text-string variable, or string
expression.

2. The RIGHTS substring always begins at the rightmost character in the
master string. You can use as many characters as you want. If you specify more
characters than the string contains, the entire string is returned.

PRINT RIGHT$(”"GRADUATE",3)

ATE
PRINT RIGHT$("RED”,4) The string contains only
RED three characters so only

three are printed.

10 INPUT "WHAT DAY IS IT”; D$
20 INPUT “MORNING OR AFTERNOON”; T$
30 IF RIGHT$(D$,4)=-"SDAY” THEN

PRINT “TUES/THURS SCHEDULE”
RUN
WHAT DAY IS IT? THURSDAY
MORNING OR AFTERNOON? AFTERNOON
TUES/THURS SCHEDULE

RLUM Abbr. rL
RLUM (color source)

Find the number of the color luminance level assigned to one of the five color
sources:

0 screen background color

1 foreground color

Examples:

Example:

82 The BASIC Language

2 multicolor mode extra color 1
3 multicolor mode extra color 2
4 screen border color
To find the luminance level, type the number of the color source in parentheses.
Only the luminance level is found.
The luminance level is stated in a range from 0 (darkest shade) to 7 (lightest

shade). .
If you want to find the color number, use the RCLR function.

PRINT RLUM(1) Prints the luminance level for the current

3 foreground color. The level is found to be 3.
RND Abbr. rN
RND (number)

Finds a random number between 0 and 1. The numbers found are decimal
values. :

A negative number in parentheses reseeds the random number generator With
that value. A zero reseeds the generator from the system clock. A positive number
returns the next number in the current random number sequence. The generator
should be reseeded only once in a program. The numbers in the sequence should
be used thereafter.

Chapter 3 contains more information about mathematical functions, including
RND.

5 X =RND(O) Reseeds the generator.

10 X=INT (9 * RND(1)) +1 Generates a random whole

20 INPUT “GUESS A NUMBER number between 1 and 9.
BETWEEN 1 & 9”;N You can choose to keep

30 IF N <> X THEN PRINT “SORRY”: guessing until you get the right
ELSE PRINT “RIGHT”: GOTO 60 answer.

40 INPUT “GUESS AGAIN”; A$

50 IF A$ = "NO” THEN 60: ELSE
GOTO 20

60 INPUT "PLAY AGAIN”;A$

70 IF A$ = "NO” THEN END: ELSE 10 To play again, goes to get a

new random number.

RUN

GUESS A NUMBER BETWEEN 1 & 9? 8

SORRY

GUESS AGAIN? OK

Parameter:

Examples:

Parameters:

BASIC Version 3.5 Commands, Functions, and 8ystem Variables 83

GUESS A NUMBER BETWEEN 1 & 9? 6
RIGHT
PLAY AGAIN? NO

RUN Abbr. rU
RUN line number

Executes the current BASIC program. Each time you issue a RUN command,
all variables in the program are cleared (numeric variables to zero and string
variables to nulls) because RUN contains an automatic CLR command.

line number

Ordinarily you would use no parameter with the RUN command. But you can
include a line number if you want program executiori to start at a line other than
the first one in the program. You might want to run just part of a program while
you are still working it out.

RUN Executes the current program.

RUN 200 Executes the current program from line 200. Preceding lines
are not executed unless a branching command sends control
back to a line before 200.

SAVE Abbr. sA
SAVE file name, device, end-of-tape flag

Stores a BASIC program on tape or disk. Although SAVE can be used to save
programs to cassette tape or disk, you should use this command to save to
cassette tape and use DSAVE to save to disk.

“file name”, device number, end-of-tape marker

1. Youshould include the name of the file. Enter the name in quotes. You can
use a variable name in place of the file name, but the variable must have a value. It
may be in parentheses (not in quotes). The only time this is likely to be useful is
when you store a program from within itself.

If you omit the file name in a SAVE to tape, the program is stored W1thout a
name, which is never a good idea.

2. Device number can be either 1 (for cassette tape recorder) or the disk drive
number (8-11); no other numbers are allowed. The default value is 1, for cassette
recorder, so you do not need this parameter if you are storing onto a cassette tape
recorder.

3. If you are storing onto tape, you can add a final parameter to specify two

Examples:

84 The BASIC Language

additional functions. If the final parameter is 1, the file cannot be relocated when
subsequently LOADed. If the final parameter is 2, an end-of-tape marker (rather
than an end-of-file) is written after the file on the tape. If the final parameter is 3,
these two features are combined. If it is omitted, or is 0, neither feature is
implemented.

Note: Files that cannot be relocated are LOADed into the memory locations
from which they were SAVEd, regardless of the status of the relocate flag in the
LOAD command. The BASIC pointers at $2D to $32 (45-50) may be adversely
altered by this event.

Saving to Tape

When you issue the SAVE command, the computer displays the message
PRESS PLAY AND RECORD ON TAPE

Press the recorder buttons. Use the VERIFY command to make sure the
program was stored accurately.

Saving to Disk

When you issue the SAVE command, the disk light comes on. Do not remove the
disk until the program is saved and the red light goes off. You can use the
DIRECTORY command to view the disk directory and confirm that the file is
saved. Use the VERIFY command to make sure the program was stored
accurately.

SAVE “CIRCLE4” Stores file CIRCLE4 on tape.

SAVE “SHAPES9”,8 Stores file SHAPES9 on disk.

SAVE "GAME”,1, 2 Stores file GAME on tape with an end-of-tape
marker.

‘SCALE Abbr. scA

SCALE flag

Alters the scaling of the screen dots in graphic modes. Ordinarily the graphic
modes have the following matrix of screen dots that you can control and use in
drawings.

High-resolution modes 320 across and 200 down

Multic’oldr modes 160 across and 200 down

BASIC Version 3.8 Commands, Functions, and System Variables 88

The SCALE command lets you change these values to 1024 logical dots both
across and down in any mode. ,

In particular, this is useful when you are unsure whether a final program will
run in high-resolution or in multicolor mode. If you do all the drawing with
SCALE on, the figures will be the same size in either mode. No coordinate
transformations are required to move between high resolution and multicolor
SCALEd coordinates.

The SCALE command may be executed at any time and remains in effect until
canceled. _

After you turn on scaling, you must adapt the drawing commands to the new
screen coordinates. For example, the center of the high-res screen is no longer
160,100. It is now 512,512.

To calculate SCALEd values from high resolution or multicolor coordinates,
use these formulas:

High-res rows 5.12 * row coordinate
High-res columns 3.2 * column coordinate
Multicolor rows 5.12 * row coordinate
Multicolor columns 6.4 * column coordinate

For example, to get the same circle as drawn without SCALE by
CIRCLE,160,100,60,50, you can use the following lines with SCALE:

5 SCALE 1

10 A=3.2*160: B=5.12 * 100
20 C=3.2*60: D=5.12 *50
30 GRAPHIC 2,1

40 CIRCLE,A,B,C,D

on or off

Turn SCALEing on by using the parameter 1. Turn SCALEing off with the
parameter 0.

SCNCLR Abbr. sC
Erases the screen and returns the cursor to the top of the screen or text area.
Use SCNCLR to clear the screen in any mode, text or graphic.
SCRATCH Abbr. scR
SCRATCH file name, Ddrive, Uunit

Deletes a disk file permanently. References to the file are erased from the disk

86 The BASIC Language

and the file is flagged as SCRATCHed in the disk directory. The number of
blocks occupied by the SCRATCHed file are freed for use.

Once overwritten, SCRATCHed files are lost permanently from the disk.
When you issue a SCRATCH command inimmediate mode, the computer gives
you a chance to double check before the command is executed. The question
ARE YOU SURE ? is displayed, and the computer does not proceed with the
SCRATCH operation until you respond. Type Y to proceed. If you type anything
else, the SCRATCH operation is aborted. In program mode, the question is not
asked. .

After you SCRATCH afile, you can verify that the file is deleted by displaying
the disk directory. Note the difference in total blocks free now that the file is
SCRATCHed.

Note: If a file is inadvertently SCRATCHed, it can sometimes be recovered
using direct-access disk commands. See Chapter 6 for a sample program.

Parameters: “file name”, D drive number, U unit number

Examples:

1. Include the name of the file you want to SCRATCH. The name must be in
quotes. It may contain wild cards, but take care to SCRATCH only files you no
longer need. You can check which files would be deleted before you execute the
SCRATCH by using the DIRECTORY command with the same file name
parameter.

2. Drive numbers are either 0 or 1. No other numbers are allowed. You can
omit this parameter if you are using a single disk drive, or if you are scratching a
file in drive 0 of a dual drive.

3. Unit number is an optional parameter. Use it only if more than one disk
drive is connected to your computer and you are using a device other than unit 8
inthe SCRATCH procedure. You must precede the unit number with U, and the
unit number must be between 8 and 11. You can also type ON before U, but ON is
never required.

Note: The drive and unit number parameters and the file name can be speci-
fied with a variable or expression in parentheses.

SCRATCH "GAME", D1 Removes file GAME from the disk in drive 1 of
a dual drive.

SCRATCH “"PICKNUM” Scratches file PICKNUM.
SGN Abbr. sG
SGN (number)

Finds the sign—positive, negative, or zero—of the number. PRINT SGN(X)
displays one of the following three responses:

Parameter:

Examples:

BASIC Version 3.8 Commands, Functions, and System Variables 87

1 X is positive
0 X is zero

-1 X is negative

These are the only possible outcomes; they reflect the number’s sign, not its
value.

SIN Abbr. sl
SIN (number)

The numeric function that finds the sine of the angle in parentheses. The angle
must be expressed in radians. For more information, see the Mathematical
Calculations section of Chapter 3.

any number or numeric expression

PRINT SIN(7/2) Prints the sine of an angle of 7 over 2 radians
1 (90 degrees).

.

PRINT SIN(30*7/180) Prints the sine of an angle of 30 degrees.
B

SOUND Abbr. sO
SOUND voice, frequency value, duration

Plays a sound after the VOL command turns on the volume. There are two
voices in the computer, so you can play two-voice harmonies. One of the voices
can be set to make a range of nonmusical noise.

The SOUND command selects the voice, the note to be played, and the length
of time the note will last.

Parameters: voice number, note value, sound duration

1. There are three possible values for voice number:

1 plays notes in voice 1
2 plays notes in voice 2
3 plays noise in voice 2
The notes played by voice settings 1 and 2 are the same set. If you play different

notes in voices 1 and 2 together, the notes play simultaneously, producing
harmony. If you play notes in the same voice, they play one at a time.

88 The BASIC Language

The voice setting 3 is actually part of voice 2. Voice 3 plays only noise, not
musical notes.

2. The note value can be from 0 to 1023, although each value does not
correspond to a true musical note. The following note chart shows the values for
playing actual notes in four octaves. Middle C is 596. See Appendix F and
Chapter 3 for more information.

Low Middle High Highest
Octave Octave Octave Octave

A 7 516 770 897

B 118 571 798 911

C 169 596 810 917

D 262 643 834 929

E 345 685 854 939

F 383 704 864 944

G 453 739 881 953

3. The duration tells the computer how long to play the sound. Duration can
have a value from 0 to 65535. A value of 1 equals 1/60th of a second, so 60 equals
one second. A value of 0 immediately cuts off the current sound for that voice.

Examples: 10 VOL 7 :
15 REM PLAY A TWO-VOICE HARMONY
20 SOUND 1,516, 60
30 SOUND 2, 345, 60
40 SOUND 1, 643, 60
50 SOUND 2, 262, 60
60 SOUND 1, 739,60
70 SOUND 8, 262, 60
NEW
10 VOL 7
15 REM PLAY A RANGE OF NOISE
20 FOR X = 600 TO 940 STEP 17
30 SOUND 3,X,15
40 NEXT

SPC Abbr. sP
SPC (number)

Adds spaces to data output to a printer or to afile on disk or tape. SPC adds the
specified number of spaces from the end of the previous PRINT item to the
beginning of the next item. The number in parentheses can be from 0 to 255.

Parameter:

BASIC Version 3.8 Commands, Functions, and S8ystem Variables 89

When you are printing on the printer and an SPC forces a space in the last
character position on the line, a carriage return and line feed are automatically
performed. When this occurs, no spaces are printed on the next line regardless of
the number of spaces in the SPC function.

SPC Compared with TAB

The difference between SPC and TAB is that TAB always counts spaces from the
leftmost column while SPC counts spaces from the last PRINTed item. For
example, in the following program, TAB forces WORD to be printed five spaces
from the left side of the screen. SPC forces WORD to be printed five spaces from
the end of the previous PRINTed item, which was 12345.

10 PRINT “12345"” TAB(58) “"WORD”
20 PRINT “123458"” SPC(5) “WORD”
30 PRINT “1234512345”

RUN

12345WORD

12345 WORD
12334512345

SQR Abbr.sQ
SQR (number)

Finds the square root of the number in parentheses. The number cannot be a
negative, though 0 is allowed.

any nonnegative number or numeric expression

SSHAPE Abbr. sS
SSHAPE string variable, corner coordinates, corner coordinates

Saves small rectangular parts of graphic screens in any graphic mode. These
graphic screen areas, which occupy the space of up to 255 characters, are saved as
text-string values in memory. You use a text-string variable to identify the screen
area, just as you use a variable to identify any type of value.

Use SSHAPE and GSHAPE when you want to repeat a pattern on a graphic
mode screen or when you are using animation and want to move or erase the
pattern. After you save a screen area with SSHAPE, you can use the GSHAPE
command to display it anywhere on the graphic screen. When you retrieve the
area with the GSHAPE command, you give the screen location where you want
the area to be displayed.

Areas saved with SSHAPE are cleared when any CLR command occurs. See
Chapter 4 for more information on GSHAPE and SSHAPE.

Parameters:

Example:

90 The BASIC Language

string variable, corner coordinates, opposite corner coordinates

1. The string variable is the name assigned to the graphic screen area saved
with the SSHAPE command. Retrieve the area with GSHAPE by using the same
string-variable name used in the SSHAPE command.

2. Give the coordinates for one corner of the shape you want to save.

3. Give the coordinates for the opposite (diagonal) corner.

10 GRAPHIC 1,1

20 FOR X = 0 TO 90OSTEP 10

30 CIRCLE, 160,100, 60,50,,,X,1R0

40 NEXT

45 REM SAVE AN AREA FROM THE DRAWING

50 SSHAPE A$, 90,60, 200,72

55 REM DISPLAY THE SAVED AREA IN REVERSE AT THE TOP OF
THE SCREEN

60 GSHAPE A$,0,5,1

STatus Abbr. none

Reserved variable name that contains a value representing the status of the
most recent input/ output operation. You can read the status of most peripheral
devices. PRINT ST to display the status of the last operation using a peripheral; 0
usually means the operation was successful.

The following chart shows the status codes for I/ O operations. See Chapter 6,
which contains detailed information about input/output operations.

Bit Value Tapel/O Serial I/ O RS232 I/]0

0 1 — Timeout write Parity error

1 2 — Timeout read Framing error

2 4 Short block — Receiver buffer overrun
3 8 Long block — Receiver buffer empty
4 16 Read error — Clear to send missing

5 32 Checksum error — —

6 64 End of file End or identify Data set ready missing
7 128 End of tape =~ Device not present Break detected

For the 1541 disk drive, the end or identify bit set usually means the end of file
has been reached. Also, for a VERIFY, bit 4 set means a verify error was found.

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 91

STEP Abbr. stE

Tells the computer how much to add to the counter variableina FOR . . . TO
.. . NEXT loop. See FOR . . . NEXT.

STOP Abbr. sT

Suspends the execution of the current BASIC program and sends the com-
puter to immediate mode so you can debug. Any OPEN files stay OPEN after a
STOP, and variables retain the values they had when the program was
interrupted.

When STOP executes, the computer displays the message BREAK IN LINE
line number, just as if you pressed the STOP key. You can use the CONT
command to restart the program at the line following the STOP command as
long as you follow the CONT restrictions: do not make program changes. You
can also use GOTO to restart the program. Type GOTO and the line number
where you want to resume.

Use END when you do not want the BREAK message.

STRS Abbr. stR
STRS (number)

Translates the number in parentheses to a text string. If the number is negative,
a minus sign precedes it in the string. A leading blank space is generated if the
number is positive. A trailing blank space is not generated in either case.

10 X=67:Y =-224
20 X$ = STR$(X)
30 Y#$ = STR$(Y)
40 PRINT X$; Y$
RUN

67-22.4

SYS Abbr. sY
SYS memory location

Executes a machine-language program at the memory location named, which
can be anywhere in RAM or ROM. For more information, see Chapter 5.

You can put a SYS command in a BASIC program to combine the BASIC
program with a machine-language program. If you do this, the machine-language
program is considered a subroutine, and you must end the machine-language
program with an RTS (return from subroutine) instruction. This RTS instruction
sends program control back to the BASIC program line that follows the SYS
command.

Example:

Example:

93 The BASIC Language

: machine-language program address

The address can be a number between decimal 0 and 65535 (hexadecimal
$0000-$FFFF), or a numeric expression standing for a number between 0 and
65535.

SYS 1525 Turns on the built-in software. This is part of the definition
for function key 1.

TAB Abbr. tA

TAB (number)

Used in a PRINT command to move the specified number of spaces to the right
from the left side of the screen or page. A TAB functionis similar to atabkeyona
typewriter. The number in parentheses can be from 0 to 255. Values above 39
refer to subsequent lines.

TAB can appear anywhere in a PRINT command, including between two
PRINT items. No punctuation is required to set off a TAB function. Regardless
of where TAB appears in the PRINT command, TAB always counts spaces from
the leftmost column of the current line.

TAB Compared with SPC

The difference between TAB and SPC is that TAB always counts spaces from
the leftmost column while SPC counts spaces from the last PRINTed item. For
example, in the following program, TAB forces WORD to be printed five spaces
from the left side of the screen. SPC forces WORD to be printed five spaces from
the end of the previous PRINTed item, which was 12345.

10 PRINT ”12345” TAB(5) “"WORD”
20 PRINT “12345” SPC(5) "WORD”
30 PRINT "1234512345"

RUN

12345WORD

12345 WORD
1234512345

TAN Abbr. none
TAN (number)

Numeric function that finds the tangent of the angle in parentheses. The angle
must be expressed in radians. If the error message DIVISION BY ZERO appears
after a TAN function, TAN has overflowed.

For more information, see the Mathematical Calculations section of Chap-
ter 3.

BASIC Version 3.8 Commands, Functions, and System Variables 93

Parameter: any number or numeric expression

Examples: PRINT TAN(#/3) Prints the tangent of an angle of 7 over 3

Example:

1.73205081 radians (60 degrees).

PRINT TAN(30+7/180) Prints the tangent of an angle of 30 degrees.
877350269

TI Abbr. none

Reserved system variable that represents the current value of the hardware
interval timer, which is also called the jiffy clock. The interval clock starts at zero
each time you turn on the computer, and it is updated every 1/60th of a second as
long as the computer is on (up to 24 hours). T1 is stated in 60ths of a second; to
find out the time in seconds, divide TI by 60. For more information, see SETTIM
in Chapter 5.

The interval clock is not on during many input and output operations.

You can use the value of TI (that is, -TT) to seed random number generation in
the RND function. '

TIS Abbr. none

Reserved system variable that represents the current value of the hardware
interval timer, which is also called the jiffy clock. The interval clock starts at zero
each time you turn on the computer, and it is updated every 1/60th of a second as
long as the computer is on (up to 24 hours). TI$ is stated in six digits: the first two
represent the current hour, the next two represent the current minute, and the last
two represent the current second.

The interval clock is not on during many input and output operations.

You can reassign the value of the clock by assigning a six-digit value to TIS.
When you reassign TI$, you must use six digits in quotation marks. If you type
any more or fewer digits, the command is rejected, and the message ILLEGAL

'QUANTITY ERROR is displayed.

The following little program shows that TI and TI$ both hold the current value
of the interval clock, each in its own way.

10 PRINT TI/60
20 PRINT TI$
30 TI$="000000"

RUN
106.833333 Shows the number of seconds the computer has been
000146 on. Shows the time the computer has been on in hours

(00), minutes (01), and seconds (46).

Parameter:

94 The BASIC Language

Line 30 resets the clock. Note the changes in the values of TI and TI$ when the
program is run again just after resetting.

RUN

1.65
000001

THEN Abbr. tH

Tells the computer what to do when an IF conditionis true. See IF. . . THEN. . .
ELSE.

"TRAP Abbr. tR

TRAP line number

Detects errors during execution of a BASIC program so that execution is not
aborted. When TRAP finds a program error, the error flag is set, and execution
passes to the line named in the TRAP command. This line can contain a routine
to help diagnose and solve the error.

After an error has been TRAPped, you can examine or display the following
information about the error:

Information } Display Command
Number of the line that contains the error PRINT EL
Error message number PRINT ER
Error message that identifies the error PRINT ERRS$(ER)

These commands can be included in the program at the line you name in the
TRAP command.
* Return to normal program execution after a TRAP by issuing a RESUME
command. Never return by using a GOTO.

line number or 0

The line number tells the computer where in the program to go if an error is
found. A value of 0 for a TRAP command turns off the error-trapping functionin
the program.

TROFF Abbr. troF

Turns off the built-in error-tracing functions that are turned on by the TRON
command.

Example:

BASIC Version 3.8 Commands, Functions, and System Variables 98

TRON Abbr. trO

Turns on built-in error-tracing functions. The tracing function displays the line
number on each line in the program as the program executes. This function helps
you locate a line that is causing program error.

UNTIL Abbr. uN

Sets a closing condition in a DO . . . LOOP sequence. When you include an
UNTIL clause in a DO loop, the loop executes until a condition is met. See DO.

USR Abbr. uS
USR (number)

This is a BASIC function (i.e., it is invoked by setting some variable equal to it).
USR goes immediately to a user-callable machine language subroutine whose
starting address is contained in memory locations 1281 and 1282. Before you can
use the USR function to access a machine-language subroutine, you must POKE
the subroutine address to memory locations 1281 and 1282. If you do not, the
execution of a USR function aborts the program and displays an ILLEGAL
QUANTITY ERROR message.

The number in parentheses is a variable or formula you are sending to be used
in the machine-language subroutine. It is stored in floating-point accumulator 1.
At the end of the subroutine, the value in floating-point accumulator 1 is returned
to the BASIC program as the value of USR. Using a machine-language subrou-
tine is much like using a BASIC user-defined function: you send a value to be
used, and it sends back to the main program the resultant value. USR is a window
between BASIC and machine language. See Chapter 5 for more information.

VAL Abbr. vA
VAL (string)

Converts a text-string number to a numeric value when you have anumberin a
text-string variable instead of a numeric variable. For example, you might input a
phone number as a text-string variable, and then want to use it as a number to dial
your automodem.

If the text=string value contains characters that are not numbers or acceptable
parts of numbers (e.g., minus signs, decimal points, or E, which connotes scien-
tific notation), the rest of the string is not converted. If the first character is not an
acceptable character, VAL returns a zero.

10 GETKEY A$ One key is gotten from the
20 IF VAL(A$)<>0 THEN GOSUB 80 keyboard. If it is a digit from
30 END 1 to 9, the subroutine is

80 PRINT“THE DIGIT IS “;A$ executed.

90 RETURN

96 The BASIC Language

VERIFY Abbr. VE
VERIFY file name, device, relocate

Compares the current program to a program on tape or disk. The verification
procedure assures you that the program you saved was stored accurately. Use
VERIFY right after you save a program to confirm accurate storage. This is very
important for saving to tape, but is not as important for disks since they are more
reliable.

You can also use VERIFY as a shortcut in positioning a tape to after a given

~ file. Just start at the beginning of the tape and VERIFY using the name of the file

Examples:

you want to follow. The computer finds the designated file, tells you the programs
do not match, and stops just after it, ready for your next operation.

: “file name”, device number, relocate flag

1. The file name is optional for tape files, required for disk files. If omitted, the
computer verifies the next program on tape.

2. The device number is 1 for cassette tape recorder or the device number for
the disk drive (8-11). The default is 1, so you can omit this parameter if you are
using a cassette recorder. The device number for the disk drive is required.

3. Therelocate flag can be 0 (verify the program at the beginning of the BASIC
program area) or 1 (verify the program at the memory location where the
program was saved). This parameter is usually used only with machine-language
programs. Its value can be overridden if tape files are SAVEd in a certain way.
See SAVE.

VERIFY Compares the current program to the next pro-
gram on tape.

VERIFY "BOXES”,8 Compares the current program to the program
BOXES stored on disk. ‘

VOL Abbr. vO

VOL level

Sets the volume for sounds made by the SOUND command. A VOL command
must be issued before any SOUND command can be audible. The volume you set
affects all voices.

You do not have to set the volume for each SOUND command. The last
volume setting is in effect until you issue another VOL command.

s volume level

The volume level setting can be from 0 to 8. The highest possible volume is 8.
You can turn off the volume with a level setting of 0.

Example:

BASIC Version 3.5 Commands, Functions, and System Variables. 97

The volume set by the VOL command is relative only to other VOL com-
mands. You can make one sound louder or quieter than another by changing the
VOL setting in between. The overall volume is controlled by your monitor or TV.

VOL 2 Sets a low volume

WAIT Abbr. wA
WAIT location, AND value, XOR value

Pauses the execution of the BASIC program until the value of the specified bits
in the given memory location equals a designated value.

: memory address, ANDed value to be checked, XORed value

1. The memory address is the location whose contents are to be checked.

2. The computer ANDs this value, which must be between 0 and 255, to the
value in the memory location. The memory location is repeatedly checked until
the operation yields a value that is not 0. When this happens, the program
continues with the command following WAIT.

3. This parameter is optional. If it is present, this value, which must be between
0 and 255, is XORed with the memory location contents before the ANDing takes
place. In other words, this parameter can be used to invert the comparison bits.
The location checked by a WAIT command must be changed by some external
event, such as a button on the tape recorder being pressed (see Chapter 6).
Otherwise, this command results in an infinite loop that can be exited only with
the reset button. Should this occur, remember to hold down the RUN/STOP key
when pressing the reset button if you want to keep your program intact. Exit the
monitor by typing X and RETURN.

WHILE Abbr. wH

‘

Sets a condition for the continuation of a DO ... LOOP. A WHILE clauseina
DO loop makes the loop execute as long as the condition is met. See DO.

2 The Built-In Software

This chapter explains all the commands for each built-in program. Separate
sections cover the commands for the word processor, the spreadsheet, and the file
manager. In addition, the instructions for formatting printed output are
explained in a separate section of the chapter. Some commands can be used in
more than one program. Next to each command is one or more abbreviations
that indicate which programs accept the command. The abbreviations used are
WP (word processor), SS (spreadsheet), and FM (file manager).

Note: Text that would be displayéd in reverse mode on your screen is shown
boxed in this book.

Switching Between the Programs

When you first turn on the built-in software by pressing function key Fl and the
RETURN key, the word processor comes up automatically. To switch to one of
the other built-in programs, you must enter command mode and issue one of the
following commands:

Command Destination

tw word processor

tf file manager

tc spreadsheet

gr graph generator (accessed through the spreadsheet only)
Command Mode

Many commands in each of the built-in programs are issued in command mode,
which means you must enter command mode before you can issue the command.
To enter command mode, press the and C keys together. The status line

28

Formatting Disks 99

displays the > sign to indicate that you are in command mode.
Formatting instructions are entered in reverse mode, not command mode.
Also, spreadsheet entries and text in the word processor are not made in com-

mand mode.

Changing Screen Colors

When you first turn on the built-in software, the word processor work area
displays pale yellow characters on a black screen. The current cursor position is
~ white. If you want to use a different color combination, issue a COLOR com-
mand in the spreadsheet. You can change the color of the screen only from the

spreadsheet.

Only the screen background color is selected with the COLOR command;
other colors are selected automatically. To select a new color, use the numbers

from Table 2-1.

1. Switch to the spreadsheet (press & C, then TC, and press RETURN).

2. Enter command mode again (press

and C).

3. Issue the COLOR command (type COLOR and the number of the color you
want to be the screen background. Type a semicolon at the end of the

command).

When you switch to another program, the screen color change remains in

effect.

TABLE 2-1. Screen Background Colors and Numbers

Background Characters Number Background Characters Number
Black Yellow/white 0 Orange Yellow/white 8
Gray Black/white 1 Brown Yellow/white 9
Red Yellow/white 2 Yellow-green Black/white 10
Cyan Black/white 3 Pink Yellow/white 11
Purple Black/white 4 Blue-green Black/white 12
Green Black/white 5 Light blue Black/white 13
Blue Cyan/white 6 Dark blue Cyan/white 14
Yellow Black/white 7 Light green = Black/white 15
Formatting Disks

Work from any built-in program can be stored on a disk (graphs must be
transferred to the word processor and stored as word processor files). Before you
can use a disk for storage, however, the disk must be formatted. Formatting

100 The Built-In Software

prepares the disk for use by dividing it into sectors compatible with your disk
drive and by establishing a disk directory.
There are two ways to format the disk:

1. You can format the disk from BASIC by using the HEADER command. Use
HEADER if you have not yet turned on the built-in software and you know
you will want to store your work on a disk. The HEADER command is
explained in Chapter 1.

2. You can format the disk from within the built-in software by using the

" FORMAT command. The FORMAT command can be issued only from the

spreadsheet program. The FORMAT command is explained in Section 3 of
this chapter. ’

Note: Do not store file manager files on a disk that contains any other type of
file, including word processor or spreadsheet files. Each file manager file should
have its own disk.

Drawing Bar Graphs

The built-in graph generator is actually a part of the spreadsheet. The graph
generator has no commands of its own. ‘You create the graphs by entering
numbers in the spreadsheet, and you can transfer the graphs to the word proces-
sor to print them as part of a document.

To create bar graphs, follow these steps:

1. If you want to keep a copy of work in either work area, use the SF (Save File)
command to store the work on a disk. Clear the word processor and spread-
sheet work areas with the CM (Clear Memory) command.

2. Switch to the spreadsheet (@ C, then TC and RETURN).

3. Type the numbers for the graph in the first row of the spreadsheet work area.
Be sure to type numbers only in the top row.

4. Issue a MAP command to tell the computer you want to send the graph to the
word processor.

5. Switch to the graph generator (¢ C, then GR and RETURN). The graph is
automatically drawn using the numbers you entered in the spreadsheet work
area.

6. Press RETURN to return to the spreadsheet.

7. Switch to the word processor (€8 C, then TW and RETURN). The graph is
displayed at the top of the word processor work area. When the graphisin the
word processor, you can make any needed changes to the graph.

8ection 1. Word Processor Commands 101

Drawing Point Graphs

The graph generator creates only bar graphs, but you can edit the graphs to make
them point graphs. Point graphs show only the top value from each graph column
whereas bar graphs show a solid bar for each column. You can create point
graphs simply by erasing all the # signs in the bar graph except for the top one.

After you edit the graph to erase all but the top # sign, you may want to change
the # signs to some other symbol, such as the * sign or the % sign. To do this, use
the RE (search and replace) command to substitute other symbols for the # sign.

Section 1. Word Processor Commands

You can use the word processor to write any type of document. You can transfer

‘data from any of the other programs and print this information as part of a word
processor document. The word processor contains a variety of useful, time-saving
features.

The word processor work area is 77 columns across and 99 lines long. If you are
writing a document longer than 99 lines, you can link files together with the
LINKFILE instruction and print the linked files as though they were one contin-
uous file.

The following commands let you control the word processor work area and
manipulate the text to suit your needs. Commands for formatting printed output
are explained in Section 2.

Key Commands
andC Enter command mode.
G and Q Repeat the previous command.
and @ - Delete a RETURN key symbol.

. CONTROL and 9 Turn on reverse mode.
. CONTROL and 0 Turn off reverse mode.

CONTROL and = Set a tab. Delete a tab when pressed in a tabbed
column.
SHIFT and = Move the cursor to the next tabbed column.
Cursor Control Keys

F1 Moves to column 1 of the following line.

102 The Built-In Software

F2 Moves to column 41 of the following line.
HOME Moves to line 1 in the current column.

CLEAR Moves to line 22 or the bottom line reached in the current
session. The cursor remains in the current column.

Command Mode Commands
~CA WP,FM,SS

Displays a l‘isting of all the files on the current disk. The file catalog includes the
following information:

File names

File lengths (stated in blocks)

Blocks remaining on the disk

Spreadsheet files have a .c suffix appended to each file name. Word processor
files have no suffix. File manager disks (each file should have its own) show only
their name and blocks free. The total blocks free on the disk shows you how much
space remains out of the blank disk total of 664.

The catalog information is displayed on a separate screen. The work area is not
affected; you can display a disk catalog at any time. When you finish looking at
the catalog and press RETURN, the intact work area is returned to the screen.

CB wP

Lets you create a text block of up to 16 lines. After a block is cfeatcd, you can
move it as a whole to any location in the work area. You can also erase the block.
To create a text block, follow these steps:
1. Move the cursor to the last line of the block.
2. Use the SP (Set Pointer) command to set the end of the block.
3. Move the cursor to the first line of the block.
4. Issue the CB (Create Block) command to create the block.
After the block is 'created, you can insert it elsewhere by moving the cursor to

the new location and issuing an IB (Insert Block) command. You can erase a
block with the DB (Delete Block) command.

Section 1. Word Processor Commands 103

If you want a text block to appear in more than one place in the work area,
create a block, insert it where you want it to be repeated, and leave the original
block intact at its original location. You can insert the block in as many locations
as you like; you are never required to erase the original block.

CM WP, SS

When issued in the word processor, clears the word processor work area, but
does not affect the other work areas. After you issue a CM command, the word
processor work is lost unless you save it first.

After you issue a CM command, the computer displays a question to double
check your intentions. In the word processor, the question is

CLEAR ALL Y/N?
In the spreadsheet the question is
ARE YOU SURE Y/N?

The questions are the same: Are you sure you want to clear the current work
area? Because all the information cleared from the work area will be lost unless
you save it first, this question glves you a last chance to change your mind before
the work area is erased.

Cp WP

Cancels all pointers set by the SP (Set Pointer) command. Whereas EP (Erase
Pointer) deletes only one pointer at a time, CP (Clear Pointer) erases all pointers
currently in the work area. The cursor can be anywhere in the work area when you
issue a CP command.

CcT wP

Gets rid of all the tabs on the screen at once. After youissue a CT (Cancel Tab)
command, all * signs, which mark tabbed columns, are erased from the bottom
line of the work area.

Tabs are set by the CONTROL and = keys. You can also use the CONTROL
and = keys to cancel a single tab.

DB wpP

Lets you erase a block of text. After it is erased, the text beneath the block is
moved up to fill the space left by the deleted block.

104 The Built-In Software
To set the boundaries of a block for deletion, follow these steps:

1. Move the cursor to the last line of the block.

2. Use the SP (Set Pointer) command to set the end of the block.
3. Move the cursor to the first line of the block.

4. Issue the DB (Delete Block) command to delete the block.

If you want to move the block elsewhere before you delete it, use the CB
(Create Block) command to create the block, and the IB (Insert Block) command
to insert the block at a new location. Then follow the preceding instructions to
delete the block.

‘DF WP, SS

Removes a file permanently from a disk. Use the DF (Delete File) command
only when you no longer want to keep a copy of the file.

To delete a file you previously saved on disk, issue the DF command and type
the name of the file when the prompt DELETE FILE: is displayed on the
command line at the bottom of the work area. When you press RETURN, the
disk takes a few seconds to remove the file from the disk. This command operates
like the SCRATCH command in BASIC.

You can verify that the file has been deleted by viewing the disk catalog, which
you access by issuing a CA command. '

DL WP

Lets you delete the line of text where the cursor is currently located. You can
delete a line of text anywhere in the work area. After you delete a line, the lines
beneath are moved up to fill in the space left by the deleted line.

To delete a line, move the cursor to the line you want to erase and issue the DL
(Delete Line) command. You can delete more than one line by repeating the DL
command, by issuinga @ Q command after a DL command, or by using the DB
(Delete Block) command to erase a group of lines.

EP wP

Cancels a pointer set by the SP (Set Pointer) command. Whereas CP (Clear
Pointers) removes all pointers currently set in the work area, EP (Erase Pointer)
erases only one.

To use EP, move the cursor to the line where the pointer you want to erase is
located, then issue the EP command. The pointer on the current line is deleted,
but other pointers in the work area are unaffected.

Section 1. Word Processor Commands 105
FU WP, SS

Cancels half-screen mode (see the HA command) and returns the screen to a
full display of the word processor work area (when issued in the word processor).
The FU (FUll screen) command has no effect unless the computer is in half-screen
mode, which is turned on by the HA command. Issuing an FU command does not
affect the contents of either the word processor or the spreadsheet.

To return to full-screen word processing, you must be in the word processor
when you issue an FU command. If you issue the command in the spreadsheet,
you will return to the full-screen spreadsheet. If this happens, just issue a TW
command to switch to the word processor. ‘

"HA WP, SS

~ Divides the screen in half so that partial work areas from the spreadsheet and

word processor programs can be displayed simultaneously. In half-screen mode,

12 lines from the word processor are displayed in the top half of the screen, and

seven rows from the spreadsheet are shown in the bottom half of the screen.
Half-screen mode has several uses:

1. When you want to transfer data from the spreadsheet row by row with the
MAP command. MAP lets you transfer data manually, and half-screen mode
lets you see both work areas while you use MAP.

2. When you need to refer to spreadsheet data while you are writing a word
processor document, but do not want to transfer the data.

3. When you need to get data from the word processor for use in the spreadsheet.
You cannot transfer data from the word processor to the spreadsheet, but
half-screen mode lets you view any part of the word processor work area while
you are working in the spreadsheet.

When you first issue the HA command in the word processor, the screen is split
in half, but the spreadsheet is not displayed in the work area. To bring up the
spreadsheet, issue a TC command. The spreadsheet is then displayed on the
bottom half of the screen, and the cursor is under spreadsheet control.

Cursor Control

Although you can see partial work areas from both programs, you can use only
one program at a time. The cursor can move around only half of the screen, and
the keyboard is under the control of the current program. You cannot type any
information into the other program. To switch between programs, you must still
issue TC and TW commands. The status line at the bottom of the screen indicates
which program currently controls the keyboard.

108 The Built-In Software

When you are in half-screen mode, you can still view any segment of the whole
work areas of either program. Just use the cursor keys and other cursor-
movement keys to display other parts of the work area on the half screen.

IB wP

Lets you insert a text block anywhere in the work area. To use the IB (Insert
Block) command, you must first use the CB (Create Block) command to set the
limits of the block. Follow these steps:

. Move the cursor to the last line of the block.

. Use the SP (Set Pointer) command to set the end of the block.
. Move the cursor to the first line of the block.

. Issue the CB command to create the block.

. Move the cursor to the line where you want to insert the block.

A »n A~ W N =

. Issue the IB command to insert the block.

While the block is being moved, the message WORKING is displayed on the
status line at the bottom of the screen. When the block is inserted in the new
location, the block also remains intact in its original location. Use the DB (Delete
Block) command to erase the original block unless you want the block to appear
in both places.

You can insert the block repeatedly when you want it to appear in several
places. Just move the cursor to the next location and issue the IB command.

ID WP, SS

Initializes the current disk. Before you use the ID (Initialize Disk) command,
make sure the drive is on and the disk is inserted.

You can initialize the disk at any time. Your current work is not affected, nor
are any files on the disk. Whenever you change disks, you should issue the ID
command after you insert the second disk so it is initialized.

IL wpP

Lets you insert a blank line between lines of text anywhere in the work area.
The new line is inserted above the line where the cursor is currently located. The
lines beneath are not affected; they are moved down one line to make room for the
new line.

To insert a line, move the cursor to the line where you want the blank line
added and then issue the IL (Insert Line) command. You can insert more than one

Section 1. Word Processor Commands 107

line by repeating the IL command, by issuing a Q command after an IL
command, or by creating a block (CB command) of blank lines and using the IB
(Insert Block) command to insert the block.

LF WP, SS

Lets you bring a file stored on disk into the work area. When you issue the LF
(Load File) command, the computer displays the message LOAD FILE: on the
status line at the bottom of the screen. Type the name of the file you want to load.

When you load a file with the LF command, the work area is cleared before the
file is displayed. The loaded file is displayed at the top of the work area regardless
of the current location of the cursor. When you want to load the file at some other
location in the work area, use the MF (Merge File) command.

Because the LF command always clears the work area before the file is loaded
at the top of the work area, any document in the work area is lost unless you saved
it before you issued the LF command. If you want to retain the document in the
work area after a file is loaded, use the MF command to load the file.

Error Messages

If the message FILE NOT FOUND >>>>is displayed on the status line after you
issue an LF command, the disk in the drive does not contain the file whose name
you typed in response to LOAD FILE. Either the wrong disk is in the drive or you
misspelled the file name when you typed it. Check the disk catalog to make sure
the file exists on that disk; then reissue the command. If the file does not exist on
the disk and you are sure you have the right disk, most likely the file was never
saved. If you must switch disks, be sure to issue the ID command after doing so.

If the message NO FILE! is displayed on the status line, the disk drive is not
connected, or is not turned on, or no disk is inserted in the drive.

MF WP

Lets you bring afile stored on disk into the work area. The difference between
LF (Load File) and MF (Merge File) is that LF clears the work area before
bringing up the file, whereas MF does not affect the work area as long as you
move the cursor past the work you want to keep. _

When you issue the MF command, the computer displays the message LOAD
FILE: on the status line at the bottom of the screen. Type the name of the file you
want to load.

When you load a file with the MF command, the loaded file is displayed
beginning at the current location of the cursor. Any work in the work area above
the cursor location is not affected, which means you can combine your current
document with a stored document. Any work below the cursor location is lost

108 The Built-In Software

and is replaced by the merged file. When you want to clear the work area and load
the file at the top of the work area, use the LF command.

If you move the cursor to a line far enough down that there is not enough room
in the work area to hold the current document and the file you want to load, only
as many lines from the loaded file as can fit in the work area are loaded. The rest
of the stored document is not loaded. No message is generated to inform you of
the partial load.

Error Messages

If the message FILE NOT FOUND >>>is displayed on the status line after you
issue¢ an MF command, the disk in the drive does not contain the file whose name
you typed in response to LOAD FILE. Either the wrong disk is in the drive or you
misspelled the file name when you typed it. Check the disk catalog to make sure
the file exists on that disk; then reissue the command. If the file does not exist on
the disk and you are sure you have the right disk, most likely the file was never
saved. If you must switch disks, be sure to issue the ID command after doing so.

If the message NO FILE! is displayed on the status line, the disk drive is not
connected, or is not turned on, or no disk is inserted in the drive.

*P WP

Prints a copy of the document currently in the word processor work area. You
can use *P (Print) only to print single work area documents. Use PR to print
linked files.

Before you issue a *P command, make sure the printer is connected and turned
on and that the paper is properly inserted.

Note: When you want to print data from the spreadsheet or the file manager,
you must first transfer the data to the word processor.

Note: To abort a printout, press the RUN/STOP key until the PRESS
RETURN prompt appears; then turn off your printer.

PR wpP

Lets you print a copy of a linked series of word processor files. When docu-
“ments contain the LINKFILE command, you can use the PR (PRint) command
to print the linked files as an uninterrupted series. When you want to print only
one file, use the *P command, not the PR command. You cannot use the *P
command to print linked files.

The PR command is a complex command that performs several tasks; it saves,
loads, and prints files. Linked files are loaded and printed automatically.

Section 1. Word Processor Commands 109

How the PR Command Saves Files

When youissue a PR command, the document currently in the work area is saved
automatically with the file name ..tw, which represents a Temporary Workspace.
After the current document is saved, the message LOAD FILE: is displayed. You
type the name of any file you want to print, and the file is loaded and printed
automatically. You can load and print any word processor file.

After all the linked files have been printed, the ..tw file is reLOADed so you can
continue editing.

How the PR Command Prints Linked Files

When you use the PR command to print linked files, the computer considers the
linked files as one file. Formatting commands in a file are also in effect in linked
files unless you change the format.

When a LINKFILE command appears in a file being printed by the PR
command, the computer automatically loads and prints the linked file as soon as
the current file is printed. You do not have to issue any commands during the
printout of linked files. You can link as many files as you like; the computer
continues to print linked files until no LINKFILE command is found.

You can link files on different disks and print them together if you include a
PAUSE command just above the LINKFILE command. PAUSE stops the
printout until you press RETURN. When the file pauses, remove the disk, insert
the second disk, and press RETURN to resume printing.

RE WP

Searches the current document to find every instance of a group of characters
you specify. The characters are replaced with other characters that.you specify.
For example, you can search a report for the phrase “due to the fact that” and
replace it with the word “because” every time the phrase appears.

The search-and-replace operation is not entirely automatic. When you use the
search-and-replace operation, the computer stops each time the searched string is
found and gives you the option to abort the search. If you choose to continue, the
computer gives you the option to replace the string with the replacement string
you typed when you issued the command. This manual replacement protects you
from inadvertently making replacement errrors.

To use the search-and-replace feature, follow these steps:

1. Move the cursor to the top of the area you want to search. If youdo not want to
search the top of the document, just position the cursor past this part. If you
fail to move the cursor above the area to be searched, the replacements cannot
be made.

110 The Built-In Software

. Issue the RE (REplace) command.
. Type the characters you want to be replaced when the prompt SEARCH: is

displayed on the status line. You can search and replace a single character or
any string of characters up to 29 characters in length.

. Press RETURN and type the characters you want to become the replacement

string when the prompt BECOMES: is displayed on the status line. The
replacement string can be any string of characters up to 28 characters in length.
The replacement string does not have to be the same length as the string being
replaced. You can replace a string with a blank.

. Press RETURN. The computer will find the first instance of the searched

string and highlight it in reverse. The message CONTINUE Y/N is displayed
on the status line.

. Press Y to continue the procedure. Pressing Y at this point does not replace the

string. If you press Y, the message REPLACE Y/N?is displayed on the status
line. If you press N, the search-and-replace operation is aborted.

. Press Y to execute the replacement. The string is replaced and a pointer (<) is

automatically set to mark the line. The computer moves to the next instance of
the searched string and displays the message CONTINUE Y/N?. Repeat steps
6 and 7 until all instances of the string are found or until you abort the
search-and-replace operation. ‘

If you press N in response to the REPLACE prompt, the current instance of
the searched string is not replaced. The computer moves to the next instance of
the searched string and displays the message CONTINUE Y/N?. Repeat steps
6 and 7.

SF WP, SS

Lets you store the current word processor document on a disk. To store afile,

follow these steps:

L.
2.
3.

Insert a formatted disk. Use the ID (Initialize Disk) command to initialize it.
Issue the SF (Save File) command.

Type a file name when the message SAVE FILE: is displayed on the status line.
You must give each file a name. The file name must be between 2 and 16
characters long.

. If a file by the given name already exists on the disk, REPLACE Y/N is

displayed. Type Y inresponse to REPLACEY/N unless you want to keep the
old copy of the file. In this case, type N and save the current file with a different
name.

Section 1. Word Processor Commands 111

If you do not have a formatted disk, insert a new disk, switch to the spread-
sheet, and issue a FORMAT command before you issue the SF command.

You can verify that the file is stored by issuing a CA command, which displays
alist of all files on the disk. Make sure the number of blocks assigned to the file is
greater than zero. If the number of blocks is zero, the file was not properly saved.
Press RETURN and issue the SF command again. -

SP WP

Defines the end of a block of text. Use a pointer to set the end of a text block for
insertion or deletion or to prevent text beneath the pointer from moving when
you use the INSERT or DELETE keys.

To set a pointer, move the cursor to the line where you want to locate the
pointer and then issue the SP (Set Pointer) command. The pointer remains in
effect until canceled. You can cancel a single pointer with the EP command, or
cancel all the pointers in the work area with the CP command.

Using a Pointer to Prevent Text from Shifting

When you move the cursor into the body of the document and then use the
INSERT or DELETE keys, all following lines move too. Generally you would
want only the rest of the paragraph to move when you press INSERT or
DELETE. To prevent subsequent paragraphs from shifting, set a pointer at the
end of the paragraph you want to work on. Then when you insert or delete within
the paragraph, the rest of the document will not be affected.

SR WP

Searches the current document to find every instance of a group of characters
you specify. Unlike the RE command, the SR (SeaRch) command does not
replace the characters that are being searched. Instead, the searched string is
simply highlighted. Use SR to find a word quickly, to search for a string you want
to replace with different strings each time it appears, or to look for misspellings.

When you use the search operation, the computer stops each time the searched
string is found and gives you the option to abort the search.

To use the search feature, follow these steps:

1. Move the cursor to the top of the area you want to search. If you do not want to
search the top of the document, just position the cursor past this part. If you
fail to move the cursor above the area to be searched, the search cannot be
made.

2. Issue the SR command.

113 The Built-In Software

3. Type the characters you want to search when the prompt SEARCH: is dis-
played on the status line. You can search for a single character or any string of
characters up to 29 characters in length.

4. Press RETURN. The computer will find the first instance of the searched
string and highlight it in reverse. The message CONTINUE Y /N is displayed
on the status line.

5. Press Y to continue the procedure. You cannot change the string if you choose
to continue. The computer will simply continue finding and highlighting
instances of the searched string. If you want to make a change to the searched
string, you can abort the search by pressing N. After you make the change, you
can start the search again by reissuing the SR command.

TC WP, FM

Lets you switch to the spreadsheet program. You.can issue the TC (To the
Calculator) command at any time. The word processor work area is not affected
when you leave the program. Use the TW command to switch back to the word
processor.

When you are using the half-screen mode, use TC to switch control to the
spreadsheet half of the screen.

TF WP, SS

Lets you switch to the file manager program. You can issue the TF (To the File)
command at any time. The word processor work area is not affected when you
leave the program. Use the TW command to switch back to the word processor.

Section 2. Instructions for Formatting Printed Documents

The following instructions let you design the format of documents you print on a
printer. These instructions do not affect the work as it is displayed on the screen.
Although the instructions themselves are embedded in the document, they do not
appear in the printed version of the work.

Formatting instructions are entered differently from commands typed in
command mode. The formatting instructions are always typed in reverse mode,
and they are always typed within the text, not on the status line. To enter a
formatting instruction, follow these steps:

1. Turn on reverse mode by pressing CONTROL and the 9 key.

Section 3. Instructions for Formatting Printed Documents 113

2. Type the formatting instruction in lowercase letters. Always type a semicolon
(;) at the end of each formatting instruction. If you are typing more than one
formatting instruction together, separate the instructions with a colon ¢). If
you include the colon, you must also include the semicolon. For example, if
you use both an LMARG and an RMARG instruction on the same line, type
them like this:

llinarglo;:rmarg6a |

Note: Text that would be displayed in reverse mode on your screen is shown
boxed in this book.

3. Turn off reverse mode by pressing CONTROL and the 0 key.

The formatting instructions are explained in alphabetical order. This section
includes the six formatting instructions for printing data from file manager
records. '

Format Defaults

Some formatting instructions have default values, but most do not. The following
are default values for printed formats:
Paper size 66 lines (11 inches)
Page length 60 lines per page
Left margin 0
Right margin 77
Justification Left only

Word wrap On
ASC

ASCIl instruction lets you send a CHRS control code directly to the printer.
You can tell a printer to print a word in boldface type, underline a heading, or
print a special character. The CHRS control values depend on your printer, not
on the computer. Your printer manual tells you the values for the CHRS control
codes. See Chapter 6 for more information.

Example:

114 The Built-In Software

CENTER

Tells the printer to print the current line centered on the page. Type the
CENTER instruction at the beginning of the line you want to center, then type the
text right next to the CENTER instruction. Do not try to center the text on the
screen; the centering is done when the document is printed.

HISTORY OF COAL MINING Prints the title centered on the
page.

EOF?

_Lets you get data from more than one file manager record in a continuous print
operation. EOF? (End Of File?) creates a conditional loop that goes through afile
to get field data from a series of records. Then the document is reprinted for each
record.

Use the EOF? instruction when you want to print multiple copies of the
document with data from a sequential group of records. For example, you would
use EOF? to print form letters, address lists, labels, and so on.

The EOF? instruction, which must be embedded at the end of the document,
does two things:

1. Checks to see if the last record in the file has been read.

2. Forces the document to be printed again, using data from the next record,
when more records remain in the file. When the last record has been read,
EOF? ends the printing operation.

The EOF? instruction is the only indication in a document that more than one
copy of the document will be printed. The RC instruction can be used to start at a
record other than the first record, and the EOF? instruction forces the computer
to the next record after the document is printed.

FLD
Used to print the contents of a file manager field anywhere in a word processor

document. You must include the field number in the FLD (FieLD) instruction.
The printer gets the contents of the specified field from the current record in the

_current file manager file. Only the contents of the field are printed. If you want to

print the field name, use the TTL instruction.
If the specified field for the current record is empty, a colon is printed in place
of the field contents.

Examples:

Example:

Section 2. Instructions for Formatting Printed Documents 118

fld3;:ﬂd5;:ﬂd1;| ' Prints the values in the current record for
fields 3, 5, and 1.

The author is|fld2;:f1d1; Prints the values in the current record for
fields 2 and 1. The fields are prmted as part of
a sentence.

JUSTIFY

Forces text to be printed right justified, which means that the right side of the
lines are printed flush against the right margin, just as the left sides of the lines are
printed flush against the left margin. Text is ordinarily printed left justified with
ragged right margins.

You can cancel a JUSTIFY instruction with the NOJUSTIFY instruction.

LINKFILE

Lets you link multiple word processor, files so they can be printed as one
continuous document. You can link as many word processor files as you need,
including files on other disks. (If you link files from other disks, include a PAUSE
instruction just before the LINKFILE instruction to provide time to switch disks
before the printing resumes.)

Linked files are treated as a continuous document when they are printed. This
means the following:

1. Margin settings and other formatting instructions affect later files unless they
are changed.

2. Page numbering continues throughout the series of linked files.

3. Text from linked files is printed without breaks on the page, so that you cannot
tell from the printed pages where one file ends and the next begins.

To link a file, include the LINKFILE instruction at the end of the document.
Beside LINKFILE, type the name of the next file, which must be enclosed in
single quotes.

You must use the PR command (not #P) to print linked files. When linked files
are printed, the next file is automatically loaded and printed with no additional
commands or other input from you.

linkfile’section®’ Links the file SECTION2? to the current file.

116 The Built-In Software
LMARG

Lets you set the left margin of the page when the document is printed. You can
use any value for the left margin as long as it is a lower number than the right
margin. The default left margin is 0.

Example: |lmarg 15;
NOJUSTIFY

Cancels a JUSTIFY instruction. NOJUSTIFY returns the document format
to the default setting of left-justified output. Left justified means that the left side
of the lines are printed flush against the left margin. The right side of the lines are
printed with a ragged margin, which means that the ends of the lines are not flush
against the margin.

NEXTPAGE

Forces the printer to go immediately to the next page and resume printing there
regardless of where the printer is currently printing on the page. ANEXTPAGE
instruction overrides the PAGELENgth setting.

You can put a NEXTPAGE instruction anywhere in the document to force a
new page. For example, just before an EOF? instruction, you could include a
NEXTPAGE instruction to force a new page each time a document is reprinted.

NOWRAP

Lets you print wider-than-usual text, such as spreadsheet data. Ordinarily the
computer considers column 77 of the word processor to run continuously onto
column 1 of the next line as if there were no end to a line. If a word is split up
between column 77 and column 1 of the next line, the computer and the printer
assume that the word is a single word. This continuity between column 77 and
column 1 is called word wrap.

In contrast with the effects of word wrap in the word processor work area, the
spreadsheet considers each row to be completely separate. When you transfer
spreadsheet data to the word processor and print the combined material, you may
have to compensate for the assumption of word wrap in the word processor and
the assumption of no word wrap in the spreadsheet. You can make sure the
spreadsheet lines are not run together by placing RETURNS at the end of each
spreadsheet line or by issuing a NOWRAP instruction just above the spreadsheet
data in the document. '

You can cancel NOWRAP with the WRAPON instruction.

Section 3. Instructions for Formatting Printed Documents 117
NO#PAGE

Cancels a#PAGE instruction. When you issue a NO#PAGE instruction, page
numbers are no longer printed at the bottom of each page.

OTHER

Lets you tell the computer that the printer you are using is not made by
Commodore. This printer-brand command is used to switch the special character
set Commodore uses to the standard ASCII character set. If you use a non-
Commodore printer and do not include an OTHER instruction in every printed
document, some characters will not print correctly.

If you use a printer made by Commodore, there is no need ever to use the
OTHER instruction.

#PAGE

Lets you print the page number at the bottom of each page. You can precede
the #PAGE instruction with a SET#PG instruction to start the first page number
to any number. The #PAGE instruction automatically increments the page
numbers as each page is printed.

Use the NO#PAGE instruction to turn off the #P AGE instruction.

PAGELEN

Lets you limit the number of lines that will be printed on each page. The value
of PAGELEN (PAGELENgth) can be any positive number that is less than the
value of PAPERSIZE. The default value of PAGELEN is 60 lines.

PAGEPAUSE

Stops the printout at the end of every page. If you are printing on single sheets
of paper (not connected fanfold paper), use PAGEPAUSE to give yourself time
to insert a new piece of paper after each page prints. The printing does not resume
until you press the RETURN key.

You might also, for example, use PAGEPAUSE to be sure the paper is
properly aligned as each page prints.

PAPERSIZE

Tells the printer you are using nonstandard length paper. The printer assumes
the paper is 11 inches long, which equals 66 lines on most printers, the default

Example:

Example:

118 The Built-In Software

setting for PAPERSIZE. You do not need to include this instruction when you
use 11-inch long paper. .

The PAPERSIZE is stated in lines, not in inches. Be sure to use the proper
PAPERSIZE; if you do not, page tops will be positioned incorrectly. When you
change the PAPERSIZE, you will most likely also change the PAGELEN. The
value of PAGELEN must be less than the value of PAPERSIZE.

pa.persizeS‘l;:pa.gelen'?ﬂ Tells the printer you are printing on 14-inch

legal-sized paper, and you want each page
to contain no more than 75 lines.

PAUSE

Can appear anywhere in a word processor document and stops the printout
immediately. If you are printing linked files that are stored on different disks, use
PAUSE to give yourself time to insert the other disk. The printing does not
resume until you press the RETURN key.

You might also, for example, use PAUSE to make sure the paper is properly
aligned during the printout.

RC

Can be used to tell the computer to start at a specific record number when
accessing file manager data. Use RC (ReCord) when you are using file manager
data in multiple printed copies of a document and you want to start at a record
other than record 1. When the RC instruction is used, the first execution of the
EOF? instruction goes to the record after the one named in the RC instruction.

Type the RC instruction just before the tf;:rc; instruction. Include the number
of the record you want to be accessed first. If you omit the RC instruction when
you are printing multiple file manager records, the first record accessed will
automatically be record 1.

Starts accessing file manager data at record 10. Records 1
through 9 are skipped.

#RC

Can be used to print the record number of the current record when you are
printing file manager data. #R C (ReCord number) prints only the record number,
not any information about the record contents.

Examples:

Example:

Example:

Section 2. Instructions for Formatting Printed Documents 119

RMARG

2

Lets you set the right margin of the page when the document is printed. You
can use any value for the right margin, as long as it is a higher number than the left
margin. The default right margin is 77.

Sets a right margin of 75.

|1marg2.0;:rmarg65;—l Sets a left margin of 20 and a right margin of 65.

SETH#PG

Lets you begin page numbering at a number other than 1. You can precede the
#PAGE instruction with a SET#PG instruction to start the first page number at
any number. The #PAGE instruction automatically increments the page numbers
as each page is printed.

A SETH#PG instruction can appear anywhere in the word processor document.
You can use SET#PG to change the sequence of page numbers or to print a page
with any page number. SET#PG is also useful when you are reprinting selected
pages from a long document.

TF:;RC

Use together at the beginning of a word processor document that will access file
manager data. The TF:;RC (To the File manager and Record) instruction is
required to tell the computer to get data from the file manager. You can type a
separate RC instruction with a record number above the TF:;RC instruction
when you want to begin accessing records at a record other than record 1.

rclO; Tells the computer to get file manager data starting at record 10.
tf:;re;

TTL

Use when accessing file manager records. TTL prints the field name for the
field specified in the instruction. TTL prints only the field name, not any data
stored in the field. Use TTL and FLD together when you want to print both the
name of the field and the contents of that field in a particular record.

tt15;:f1d5; Prints the field name of field 5 and the field contents from

the current record.

120 The Built-In Software

WRAPON

Cancels the NOWRAP instruction and returns to normal word wrap condi-
tions. Ordinarily the computer considers column 77 of the word processor to run
continuously onto column 1 of the next line as if there were no end to a line. If a
word is split up between column 77 and column 1 of the next line, the computer
and the printer assume that the word is a single word. This continuity between
column 77 and column 1 is called word wrap.

Turn word wrap off with the NOWRAP instruction when you are printing
spreadsheet data and you do not want the rows of data to be considered a
continuous line. You can also make sure spreadsheet rows are not run together by
placing RETURN:S at the end of each spreadsheet line.

Section 3. Spreadsheet Commands

The spreadsheet lets you keep track of any type of tabular information. You can
use numbers, words, or formulas as spreadsheet entries. The spreadsheet work
area is organized into numbered rows and columns. Each row-and-column
position in the work area is called a cell. A cell is identified by its row;column

numbers.
Key Commands

Cursor-down arrow Moves the cell cursor down.

Cursor-up arrow Moves the cell cursor up.

F2 or & and R Moves the cell cursor to the right.

‘Flor @ and L Moves the cell cursor to the left.

& and T keys Prepare for text entry into a cell.

& and N keys Prepare for numeric entry into a cell. Necessary
only when the cell was previously reserved for
text or formula entries.

& and F keys Prepare for formula entry into a cell. Also

redisplay a formula used in a cell.

and Q keys Repeat the previous tommand.

Mathematical Operators Used in Spreadsheet Formulas

Precedes a constant number #100 + 2;1
in a formula.

+ Addition. 6,6 + 6,7

ABS
ATN
COS
DIV

EXP
IFTRUE
LOG
MAX

MIN

MLT
NOTIFTRUE
SIN

SUB

SUM

TAN

-—

Section 3. Spreadsheet Commands

Subtraction.

Multiplication.

Division.

Exponentiation.

Absolute (positive) value.
Arctangent in radians.
Cosine of an angle in radians.

Divides a row or column
series of cells.

Finds an exponential of the

constant e (approximately
2.71828183).

Makes an entry only if a
clause is true.

Logarithm base e.

Displays the highest number /

in a row or column series
of numbers.

Displays the lowest number
in a row or column series
of numbers.

Multiplies a row or column
series of cell entries.

Makes an entry only if a
conditional clause is false.

Sine of an angle in radians.

Subtracts a row or column
series of cell entries.

Adds a row or column series
of cell entries.

Tangent of angle in radians.

Transfers the contents of one

cell or a number into another

cell in an IFTRUE or
NOTIFTRUE formula.

121

8;2-172
2;6 * 3;1
9;2 /44
4;412;2
ABS 3;2
ATN 3;2

-COS 5;8

DIV 4,4 TO 9;4

EXP 4;12

3;1=#100iftrue3;2—#200

LOG 12;4

MAX 7,1 TO 7,9

MIN 7;1 TO 7;9

MLT 5;2 TO 5;9

3;1>2;Inotiftrue3;1+-2;1 .

SIN 4;4
SUB 5;2 TO 9;2

SUM 5;2 TO 9;2

TAN 12;3
3;1 <21

123 The Built-In Software
Command Mode Commands
AUTO SS

Turns on AUTOmatic calculation mode. When auto mode is on, formulas
entered with the FIT command are automatically calculated. In addition, when
you are in auto mode and change a cell entry that was used in a formula, any other
cell entries that are affected by the change are automatically recalculated. Auto
mode changes, however, do not affect cells frozen with the FRE command.

When auto mode is off, calculations are performed in manual mode. In manual
mode, which is turned on with the MAN command, FITted formulas are not
solved, and formulas affected by cell changes are not recalculated. You must
enter auto mode to solve these calculations.

The default calculation mode is manual mode. The current calculation mode is
indicated by MANU. or AUTO., which is displayed at the far right on the status
line.

BLKMAP SS

Lets you transfer spreadsheet data to the word processor in blocks of up to 7
columns by 50 rows. The width of the block is limited to 7 columns because 7
columns of 11-column cells fill the 77-column word processor work area.

The word processor work area does not need to be empty when you transfer
spreadsheet data, but be sure there is room in the 99-line word processor work
area to hold all the spreadsheet data you are transferring. If there is not enough
room and you are moving spreadsheet data to the bottom of the word processor
work area, only as much data as can fit will be transferred.

When you use the BLKMAP (BLocKMAP) command, spreadsheet data are
transferred without the row and column numbers. The data are placed in the
word processor work area starting at the location of the word processor cursor. If
the word processor cursor is placed so that work in the word processor is already
occupying some of the lines where the spreadsheet data will go, those lines of the
word processor work are cleared and the spreadsheet data are written in its place.
Make sure the word processor cursor is placed so that overwriting will not occur.

To use BLKMAP, follow these steps:

1. Switch to the word processor (€8 C, then TW and RETURN).

2. Move the cursor in the word processor to the position where you want the
spreadsheet data to be moved. The spreadsheet data will be displayed over any
word processor text that appears in the area where the data are to be moved, so
be sure there are enough blank lines at the transfer location.

3. Switch back to the spreadsheet (@ C, then TC and RETURN).

Example:

Example:

Section 3. Spreadsheet Commands 1233

4. Put the cell cursor in the cell that is to be the top left corner of the block you are
moving to the word processor.

5. Enter command mode and type BLKMAP and the cell number for the bottom
right corner of the block. For example, type BLKMAP 7;3 to move data from
the current cell cursor position to cell 7;3.

The message WORKING is displayed briefly while the transfer is taking
place.

6. Switch to the word processor (8 C, then TW and RETURN).

After the spreadsheet data have been moved, they become part of the word
processor document and can be manipulated by all the word processor com-
mands. But the data are now text and can no longer be updated by the spreadsheet
commands.

You can also use the MAP command to transfer spreadsheet data to the word
processor. MAP transfers data row by row, not in blocks. Use the MAP com- _
mand when you want to transfer longer cell entries that do not appear in the cells

" but are held in memory. BLKMAP transfers only the 11 characters per cell that

appear in the spreadsheet work area.

BLKMAPR3;7 Transfers the block of data from the current cell cursor
location to cell 23;7.

CA WP, FM, SS

Displays a listing of all the files on the current disk. The file CAtalog includes
the following information:

File names.
File lengths (stated in blocks).

Blocks remaining on the disk.

Spreadsheet files have a .c suffix appended to each file name. Word processor
files have no suffix. File manager disks (each file should have its own) show only
their name and blocks free. L)

The total blocks free on the disk shows you how much space remains out of the
blank disk total of 664.

The catalog information is displayed on a separate screen. The work area is not
affected; you can display a disk catalog at any time. When you finish looking at
the catalog and press RETURN, the intact work area is returned to the screen.

ca Lists a catalog of files on the current disk.

Example:

Example:

124 The Built-In Software

cco SS

Lets you copy the cell entries from one column into another. CCO (Column
COpy) writes a duplicate of all cell entries from the column you are copying into
the column where the cell cursor is currently located. The cells are copied into the
same row positions. The cells in the column that is being copied are not affected;
this is a duplication, not a transfer.

To use the CCO command, move the cell cursor into any cell in the column that
is the destination of the copied column. Then type the CCO command followed
by the column number of the column whose cells you are copying. Type a
semicolon at the end of the command and press RETURN. The message WORK-
ING is displayed on the status line while the procedure is being executed. The cells
from the copied column then appear in the same row positions in the new column.
The cells in the old column are not affected.

Several precautions must be taken with the CCO command:

1. The CCO command overwrites any cell entries that are already present in the
cells into which you are copying. This means that those cell entries are lost. You
can protect a cell against overwriting by freezing the value with the FRE
command. A frozen cell remains intact when a column is copied into the
column where the frozen cell is located.

2. The CCO command does not adjust formulas when the column is copied. If
any of the cells is used in a formula, you must change the formula manually. It
is best to use CCO only to copy data into a column past all the columns you
have already entered. Copying columns into the midst of filled columns can
lead to errors and oversights even if you use the CINS command to insert a
blank column before you copy. Like CCO, CINS does not adjust the formulas
in the affected columns.

3. Be sure to type a semicolon at end of the CCO command or the command will
not work.

cco3; Copies all the entries from column 3 into the column where the cell
cursor is currently located.

CDEL SS

Deletes all the cell entries in an entire column. If there are any columns to the
right of the deleted column, they are moved one column to the left to fill in the
deleted column. Be careful when you use the CDEL (Column DELete) command:
CDEL does not adjust any formulas that are affected by a column deletion.
Formulas that refer to cells to the right of a deleted column will most likely be
affected, and you will have to change the formulas manually.

cdel Deletes the column where the cursor is currently located.

Section 3. Spreadsheet Commands 128

CINS SS

Inserts a blank column between filled columns. Columns to the right of the
inserted column are moved one column to the right to make room for the inserted
column.

Be careful when you use the CINS (Column INSert) command: CINS does not
adjust any formulas that are affected by a column insertion. Formulas that refer
to cells to the right of an inserted column will most likely be affected, and you will
have to change the formulas manually.

CM WP, SS

When issued in the spreadsheet, clears the spreadsheet work area, but does not
affect the other work areas. Spreadsheet work is lost after you issue a CM
command, unless you save the work first.

After you issue a CM command, the computer displays a question to double
check your intentions. In the word processor the questionis: CLEAR ALL Y /N?
In the spreadsheet the question is: ARE YOU SURE Y/N? The questions are the

'same: Are you sure you want to clear the current work area? Because all informa-
tion cleared from the work area is lost unless yousave it, this question gives you a
last chance to change your mind before the work area is erased.

COLOR SS

Lets you select a new color for the screen background. When you first turn on
the built-in software, the word processor work area displays a white cursor and
pale yellow characters on a black screen. If you want to use a different color
combination, issue a COLOR command in the spreadsheet. You can change the
color of the screen only from the spreadsheet.

You can select only the screen background color with the COLOR command;

other colors are selected automatically. To select a new color, use the numbers
from Table 2-2.

TABLE 2-2. Screen Background Colors and Numbers

Background Characters Number Background Characters Number

Black Yellow/white 0 Orange Yellow/white 8
Gray Black/white 1 Brown Yellow/white 9
Red Yellow/white 2 Yellow-green Black/white 10
Cyan Black/white 3 Pink Yellow/white 11
Purple Black/white 4 Blue-green Black/white 12
Green Black/white 5 Light blue Black/white 13
Blue Cyan/white 6 Dark blue Cyan/white 14
Yellow Black/white 7 Light green Black/white 15

Example:

126 The Built-In Software

To issue a COLOR command, enter command mode and type COLOR and
the number of the color you want for the screen background. Type a semicolon at
the end of the command.

When you switch to another program, the screen color change remains in
effect.

When you select a new color, cell entries that were made previously are not all
automatically changed to the new character color (if there is a new character
color). To change the cell colors, just pass the cell cursor up and down one
column. All the cells in each row are changed to the new character color as the cell
cursor passes down the column.

All the characters in the word processor work area, however, are automatically
changed to a new character color as soon as you switch to the word processor.

COPY SS

Lets you copy a cell entry into the cell where the cell cursor is currently located.
If there is already a value in the recipient cell, itis overwritten unless it is protected
by the FRE (frozen cell) command. The cell that is being copied is not affected by
the COPY command; this is a duplication, not a transfer.

To use the COPY command, move the cell cursor into the cell where you want
the duplicate entry to appear. Then type the COPY command followed by the cell
number of the cell you are copying.

The COPY command does not adjust formulas when the cell is copied. If the
duplicate cell is used in a formula that needs adjustment, you must change the
formula manually.

copy3;4 Copies the entry from cell 3;4 into the cell where the cell cursor
is currently located.

DF WP, SS

Removes a file permanently from a disk. Use the DF (Delete File) command
only when you no longer want to keep a copy of the file.
. To delete a file you previously saved on disk, issue the DF command and type
the name of the file when the prompt DELETE FILE: is displayed on the
command line at the bottom of the work area. When you press RETURN, the
disk takes a few seconds to remove the file from the disk. This command operates
like the SCRATCH command in BASIC.

You can verify that the file has been deleted by viewing the disk catalog, which
you access by issuing a CA command.

Example:

Section 3. Spreadsheet Commands 137
FIT SS

Copies a formula from a cell into another cell and adjusts the formula to fit the
new cell. To use FIT, move the cell cursor to the cell where you want the adjusted
formula to appear. Then type FIT and the cell number of the cell whose formula
you want to adapt. The FIT command automatically changes the cell numbers in
the formula to fit the new cell.

When you use the FIT command in manual calculation mode, the solution to
the FITted formula is not calculated. Instead, the solution to the original formula
is displayed in the new cell. You must enter auto calculation mode to solve FITted
formulas. As soon as you enter auto mode, all FITted formulas in the work area
are solved and the answers are displayed in the appropriate cells.

If you are already in auto mode when you enter a FITted formula, the correct
solution to the FITted formula is displayed automatically in the new cell.

For example, if the formula in cell 3;6 is SUM 3;2 TO 3;5, and you move the
cursor to cell 4;6 and issue the command FIT 3;6, the computer changes the
formula to SUM 4;2 TO 4;5.

The difference between the formulas is that the row number has been adjusted
to match the difference between the row of the original formula (row 3) and the
row of the FITted formula (row 4). When the FITted formula is adjusted, the
computer measures the difference between the row and column locations where
the original formula appeared and the row and column coordinates of the cell
where you issued the FIT command. Row and column number differences are
then used to adjust the formula in the new cell.

With the cell cursor in cell 7;5, issue the command FIT4;3. Cell 4;3 contains this
formula; sum 1;3 to 3;3. The formula is adjusted to be sum 4;5 to 6;5.

The difference between cells 7;5 and 4;3 is three rows and two columns. To
adjust the formula from cell 4;3, the computer adds three rows to each row and
two columns to each column in the formula. The resulting cell numbers in the -
formula are calculated 1+3;3+2 TO 3+3;3+2, or sum 4;5 to 6;5.

FL SS

Returns numeric cell entries to the default floating point format. Floating
point numbers have a variable number of decimal places. The decimal point
“floats” to the appropriate place in the number.

Use the FL (FLoating point) command when you want to cancel an IN (integer
format) or $$ (two-decimal-place dollar format) command.

Current cell entries are not affected when you change the numeric display
format. If you change the format and want to adjust current cell entries, move the

128 The Built-In Software

cell cursor to each cell and press RETURN. The numeric entries will be converted
to the current numeric display format.

FORMAT

Prepares a NEW disk for file storage. Formatting divides the disk into sectors
compatible with your disk drive and establishes a disk directory. You can format
a used disk, but formatting erases everything on a disk, so do not format a used
disk unless you are wiling to erase all the information stored on it.

You can format the disk in two ways:

1. From BASIC by using the HEADER command. Use HEADER if you have
not yet accessed the built-in software and you know you will want to store your
work on a disk. The HEADER command is explained in Chapter 1.

2. From within the built-in software by using the FORMAT command. The
FORMAT command can be issued only from the spreadsheet program. If you
are using a different program and want to format a disk, switch to the
spreadsheet. DO NOT switch back to BASIC to use the HEADER command
because you will lose your work in the built-in program.

Follow these steps to format a disk from the spreadsheet:

1. Insert a new disk into the disk drive. If you have ever used the disk before, DO
NOT format it unless you are certain you do not want to keep anything on the
disk. Formatting erases any information already stored on the disk. Do not
format disks that contain commercial software either.

2. Enter the command mode, type FORMAT, and press RETURN.

3. Type Y in response to ARE YOU SURE?if you are indeed sure you want to
format the disk. This prompt question gives you a last chance to bail out before
the format executes. Be sure the disk is blank or expendable before you type Y.
Type N if you change your mind. »

4. In response to the prompt, type in a disk name (up to 16 characters) followed
by acomma and a 2-character identification for the disk. Every disk should be
given a unique identification.

After a short period of time, the disk is formatted and you can save files on it.

Note: Do not store file manager files on a disk that contains any other type of
file, including word processor or spreadsheet files. Each file manager file should
have its own disk.

Example:

Exa.mple:

Section 3. Spreadsheet Commands 139
FRE SS

Protects a cell entry from being changed by an inserted, deleted, or copied cell
or by any change in the numeric display format or a formula. The value of a
frozen cell cannot be changed at all until you cancel the freeze with the THAW
command.

To FREeze acell, move the cell cursor to the cell whose entry you want frozen.
Issue the FRE command.

When the cell cursor enters a frozen cell, an asterisk is displayed on the status
line to indicate that the cell value is frozen.

FRE Freezes the entry in the current cell so it cannot be changed.

FU WP, SS

Cancels half-screen mode (see the HA command) and returns the screen to a
full display of the spreadsheet work area. The FU (FUI screen) command has no
effect unless the computer is in half-screen mode, which is turned on by the HA
command. Issuing an FU command does not affect the contents of either the
word processor or the spreadsheet.

To return to the full-screen spreadsheet, you must be in the spreadsheet when
you issue an FU command. If you issue the command in the word processor, you
will return to the full-screen word processor. If this happens, just issue a TC
command to switch to the spreadsheet.

GOTO SS

Moves quickly and directly to a specified cell without using the cursor move-
ment keys. To use GOTO, type GOTO and the number of the cell that is your
destination.

goto 12;10 Sends the cell cursor directly to cell 12;10.

HA WP, SS

Divides the screen in half so that partial work areas from the spreadsheet and
word processor programs can be displayed simultaneously. In half-screen mode,
12 lines from the word processor are displayed in the top half of the screen, and 7
rows from the spreadsheet are shown in the bottom half of the screen.

Half-screen mode has several uses:

Example:

130 The Built-In Software

1. When you want to transfer data from the spreadsheet row by row with the
MAP command. MAP lets you transfer data manually, and half-screen mode
lets you see both work areas while you use MAP.

2. When you need to refer to spreadsheet data while you are writing a word
processor document, but do not want to transfer the data.

3. When you need to get data from the word processor for use in the spreadsheet.
You cannot transfer data from the word processor to the spreadsheet, but
half-screen mode lets you view any part of the word processor work area while
you are working in the spreadsheet.

When you first issue the HA command in the word processor, the screen is split
in half, but the spreadsheet is not displayed in the work area. When you first issue
the HA command in the spreadsheet, the spreadsheet is displayed in the bottom
half of the screen, and the word processor work area is not visible. To bring up the
other program, issuea TC or TW command. The other program is then displayed
on the other half of the screen.

Cursor Control

Although you can see partial work areas from both programs, you can use only
one program at a time. The cursor can move around only half of the screen, and
the keyboard is under the control of the current program. You cannot type any
information into the other program. To switch between programs, you must still
issue TC and TW commands. The status line at the bottom of the screen indicates
which program currently controls the keyboard.

When you are in half-screen mode, you can still view any segment of the whole
work areas of either program. Just use the cursor keys and other cursor move-
ment keys to display other parts of the work area on the half screen.

HOME SS
Moves the cell cursor directly and quickly to cell 1;1.

home Moves the cell cursor directly to cell 1;1.
ID WP, SS

Initializes the current disk. Before you use the ID (Initialize Disk) command,
make sure the drive is on and the disk is inserted.

You can initialize the disk at any time. Your current work is not affected, nor
are any files on the disk. Whenever you change disks, you should issue the ID
command after you insert the second disk so that it is initialized.

Example:

Examples:

Section 3. Spreadsheet Commands 131
id Initializes the disk currently in the drive.
IFTRUE

Checks the condition of part of a formula. IFTRUE lets you make cell entries
based on conditions in other cells. For example, if you are figuring a budget, you
can put an amount of money into the savings column IF it is TRUE that income
minus expenses for the month is a positive number.

The IFTRUE formula is a compound command consisting of the following:

1. The first part contains the calculation whose outcome is checked by IFTRUE.
2. The IFTRUE command is typed next.

3. Thefinal part is the assignment of a value to a cell, which is executed ONLY if
the condition in the first part is met.

The first part of the formula usually contains a comparison operator. Four
comparison operators you can use are described in Table 2-3.

The third part of the IFTRUE formula uses the left-pointing arrow to assign a
value to a cell, which occurs only when the first part of the formula is true.

The IFTRUE formula can be used while the cell cursor is in any cell. However,
when the IFTRUE formula is executed, a 0 (when false) or 1 (when true) is placed
in the current cell if that cell is not also the destination for the IFTRUE formula.
So do not issue an IFTRUE when the current cell contains a value you want to
protect.

You can also use the NOTIFTRUE command to check conditions in a for-
mula. NOTIFTRUE assigns the value in part 3 of the formula only when the
calculation in the first part of the formula is not true.

10;3 > 11,3 iftrue 12;3 — 10;3 Assigns the value of cell 10;3
to cell 12;3 if the entry in 10;3
is greater than the entry
in11;3..

TABLE 2-3. Comparison Operators

Symbol Meaning

= equal
nte not equal
> greater than
< less than

Example:

Example:

132 The Built-In Software

12;10 + #100 = 4;10 iftrue 3;10 — #2380 Assigns the number 250 to cell
3;10 if the value of 12;10 plus
100 is equal to the entry in cell
4;10.

IN SS

Displays numeric cell entries as whole numbers only, regardless of whether or
not the numbers were entered with decimal parts. Decimal parts of numbers
entered are simply chopped off; they are not rounded. For example, if you are
using the INteger format and enter 12.9, the spreadsheet will display 12 in the cell.

Current cell entries are not affected when you change the numeric display
format. If you change the format and want to adjust current cell entries, move the
cell cursor to each cell and press RETURN. The numeric entries will be converted
to the current numeric display format.

Use the FL command to cancel an IN command.

Although integer format truncates decimal parts, the spreadsheet remembers
the entire value you entered. If you go back to floating point format, send the cell
cursor back into the cell and press RETURN, the decimal part will then be
displayed.

in Changes the format of numeric entries so only whole numbers are displayed.
LEFTJ SS

Displays numeric entries LEFT Justified in their cells. Ordinarily numeric
entries are right justified, which means they are flush against the right margin of
the cell. Left justification displays numeric entries flush against the left margin of
the cell. Text entries are automatically left justified.

The cell cursor can be anywhere when you enter a LEFTJ command. Only
numeric entries that you make after the command is issued are affected. You can,
however, also change previous entries by moving the cell cursor back to each cell
and pressing RETURN.

Cancel LEFTJ with the RIGHTJ command.

leftj Forces numeric entries to be displayed flush against the left margin of
the cell.

LF WP, SS

Lets you bring a file stored on disk into the work area. When you issue the LF
(Load File) command, the computer displays the message LOAD FILE: on the
status line at the bottom of the screen. Type the name of the file you want to load.

Example:

Example:

Section 3. Spreadsheet Commands 133

When you load afile with the LF command, the work area is cleared before the

- fileis displayed. The loaded file is displayed at the top of the work area regardless

of the current location of the cursor. Because the LF command always clears the
work area before the file is loaded at the top of the work area, any work in the -
work area will be lost unless you saved it before you issued the LF comand.

Error Messages

If the message FILE NOT FOUND >>>is displayed on the status line after you
issue an LF command, the disk in the drive does not contain the file whose name
you typed in response to LOAD FILE. Either the wrong disk is in the drive or you
misspelled the file name when you typed it. Check the disk catalog to make sure
the file exists on that disk; then reissue the command. If the file does not exist on
the disk and you are sure you have the right disk, most likely the file was never
saved. If you must switch disks, be sure to issue the ID command after doing so.

If the message NO FILE! is displayed on the status line, the disk drive is not
connected, is not turned on, or no disk is inserted in the drive.

If After you type If, the computer displays LOAD
LOAD FILE: budget FILE. Type the name of the file you want to load.

MAN SS

Cancels automatic calculation mode. When MANual mode is on, formulas are
calculated only when you enter the formula cell and press RETURN. Formulas
entered with the FIT command are not calculated. In addition, when you are in
manual mode and change a cell entry that was used in a formula, any other cell
entries that are affected by the change are not recalculated. To perform these
calculations, you must use the AUTO command to enter auto mode.

The default calculation mode is manual mode. The current calculation mode is
indicated by MANU. or AUTO., which is displayed at the far right on the status
line.

MAN Cancels auto mode and returns to manual calculation mode.
MAP SS

Lets you transfer cells of spreadsheet data by rows to the word processor.
Transferring data with the MAP command is manual: you move the cell cursor
into each cell you want to transfer. Because you select each cell, you should use
MAP in half-screen mode so that you can see both work areas simultaneously.

Use MAP when you want to transfer only selected cells from the spreadsheet.
The spreadsheet data are MAPped to the current word processor cursor location.

134 The Built-In Software

MAPped data overwrites word processor text, so be sure the cursor is beneath all
the text or create enough blank spaces within the text to avoid overwriting.

Use the IL (Insert Line) command to open up blank lines. You can also create a
block of blank linés with the SP (Set Pointer), CB (Create Block), and IB (Insert
Block) commands. To create a block of blank lines, move the cursor to a blank
area on the word processor screen, set a pointer at the bottom of the appropriate
number of blank lines, and create a block. Then move the cursor to the line in the
text where you want to locate the blank block, and insert the block.

When you use MAP, you set a top left corner of the area to be transferred. You
cannot MAP above or to the left of this corner. No bottom right corner is set, and
you can leave out any cell to the right of the leftmost column just by not putting
the cell cursor into a cell.

Every time you enter a row, whether you have been in it before or not, you must
move the cell cursor to the leftmost cell on that row. Otherwise you will not be
able to MAP any cells in the row. If you have previously MAPped the leftmost
cell, you still have to return to it to MAP any more cells when you reenter the row.

After you MAP the leftmost cell in a row, you do not have to MAP cells in any
particular order. You can move more cells in the row or go immediately to the
next row. You can go back up to rows, skip cells, or skip down to other rows, as
long as you visit the leftmost cell each time you enter the row.

To use MAP, follow these steps:

1. Turn on the half-screen mode (& C, then HA and RETURN).
2. Switch to the word processor (@@ C, then TW and RETURN).

3. Move the word processor cursor to the place on the screen where you want to
place the MAPped data. Note that MAPped data overwrite word processor
text, so move the word processor cursor under all the text, or open up enough
blank space within the text to prevent text loss.

4. Switch back to the spreadsheet (€8 C, then TC and RETURN).

5. Put the cell cursor in the cell that is to be the upper left corner of the cells
- MAPped to the word processor.

6. Issue the command MAP and press RETURN.

7. Move the cell cursor into every cell you want to transfer.

You can move to the next row and continue MAPping without issuing another
MAP command. However, once the first row establishes the leftmost column of a
MAPped row, subsequent rows must also begin in that column. Use the F1, F2,
and cursor up and down keys to move across rows to transfer data.

Example:

Section 3. Spreadsheet Commands 135

Using MAP to Transfer Long Cell Entries

When you first enter data into a cell, you can enter up to 36 characters per cell, but
only 11 characters are displayed. Extra characters are held in memory and are
displayed on the command line when you enter the cell. MAP sends these extra
characters, including long formulas. In contrast, BLKMAP transfers only 11
characters per cell.

Turning OFF the MAP Command

The OFF command lets you stop the MAPping procedure. You can also termi-
nate MAP by switching to the word processor.

Issuing Other Commands During a MAPping Procedure

Unless you terminate MAP by using the OFF command or by leaving the
spreadsheet, MAPping remains in effect. You can issue other spreadsheet com-
mands during MAPping without turning MAP off. You can also make changes
in cell entries during a MAPping procedure without interrupting the transfer
process. The changed cell entry is MAPped to the word processor.

map Turns on cell MAPping.
off Turns off cell MAPping.

NOTIFTRUE

Checks the condition of part of a formula. NOTIFTRUE lets you make cell
entries based on conditions in other cells. For example, if you are figuring a
budget, you can put an amount of money into the savings column IF it is NOT
TRUE that income minus expenses for the month is a negative number.

The NOTIFTRUE formula is a compound command consisting of the
following:

1. The first part contains the calculation whose outcome is checked by
NOTIFTRUE.

2. The NOTIFTRUE command is typed next.

3. The final part is the assignment of a value to a cell, which is executed ONLY
when the condition in the first part is not met.

Examples:

Example:

136 The Built-In Software

The first part of the formula usually contains a comparison operator. Four
comparison operators you can use are shown in Table 2-4.

TABLE 2-4. Comparison Operators

Symbol Meaning

= equal

nte not equal

> greater than
< less than

The third part of the NOTIFTRUE formula uses the left-pointing arrow to
assign a value to a cell, which occurs only when the first part of the formulais not
true.

The NOTIFTRUE formula can be used while the cell cursor is in any cell.
However, when the NOTIFTRUE formula is executed, a 0 (when false) or 1
(when true) is placed in the current cell if that cell is not also the destination for the
NOTIFTRUE formula. Therefore, do not issue a NOTIFTRUE when the current
cell contains a value you want to protect.

You can also use the IFTRUE command to check conditions in a formula.
IFTRUE assigns the value in part 3 of the formula only when the calculation in
the first part of the formula is true.

8;6 = 9;6 notiftrue 10;6 — 7;6 Assigns the value of cell 7;6 to
cell 10;6 if the entry in 8;6 does
not equal the entry in cell 9;6.

2;1 * #.6 < 4;1 notiftrue 3;1 — #7.5 Assigns the number 7.5 to cell
3;1 if the value of cell 2;1 times
0.6 is not less than the entry in
cell 4;1.

OFF SS

Turns off the MAP command when you are finished transferring rows of
spreadsheet data to the word processor.

off Cancels a MAP command.
RCO SS

Lets you copy the cell entries from one row into another. RCO (Row COpy)
writes a duplicate of all cell entries from the row you are copying into the row

Example:

Example:

Section 3. Spreadsheet Commands 137

where the cell cursor is currently located. The cells are copied into the same
column positions. The cells in the row that is being copied are not affected; this is
a duplication, not a transfer.

To use the RCO command, move the cell cursor into any cell in the row that is
the destination of the copied row. Then type the RCO command followed by the
row number of the row whose cells you are copying. Type a semicolon at the end
of the command and press RETURN. The message WORKING is displayed on
the status line while the procedure is being executed. Then the cells from the
copied row appear in the same row positions in the new row. The cells in the old
row are not affected.

Several precautions must be taken with the RCO command:

1. The RCO command overwrites any cell entries that are already present in the
cellinto which you are copying. This means that those cell entries are lost. You
can protect a cell against overwriting by freezing the value with the FRE
command. A frozen cell remains intact when a row is copied into the row where
the frozen cell is located.

2. The RCO command does not adjust formulas when the row is copied. If any of
the cells is used in a formula, you must change the formula manually. It is best
to use RCO only to copy data into a row below all the rows you have already
entered. Copying rows into the midst of filled rows can lead to errors and
oversights even if you use the RINS command to insert a blank row before you -
copy. Like RCO, RINS does not adjust the formulas in the affected rows.

3. Be sure to type a semicolon at the end of the RCO command or the command
will not work.

rcod; Copies all the entries from row 3 into the row where the cell cursor
is currently located.

RDEL SS

Deletes all the cell entries in an entire row. If there are any rows below the
deleted row, they are moved up one row to fill in the deleted row. Be careful when
you use the Row DELete command: RDEL does not adjust any formulas that are
affected by a row deletion. Any formulas that refer to cells below a deleted row
will most likely be affected, and you will have to change the formulas manually.

rdel Deletes the current row.
RESET SS

Clears the work areas of all the built-in programs and starts the built-in
software over as if you had just turned the software on. The computer goes back

Example:

Example:

Example:

138 The Built-In Software

to the software title screen, not to BASIC, so you do not press the F1 key to get
back to the software. ‘

After you issue a RESET command, the computer displays the message ARE
YOU SURE Y/N. If you are certain you are willing to erase all your work areas
and return the built-in programs to a just-turned-on condition, type Y. If you
decide against resetting the built-in programs, type N.

The difference between the RESET command and the RESET button, which is
located on the side of the computer, is that the RESET command clears the
built-in software and returns the software to a just-turned-on condition while the
RESET button cancels the built-in software and returns the computer to BASIC,
where the initial power-on message is displayed.

The RESET command can be issued only from the spreadsheet.

reset Clears all software work areas and returns them to a just-turned-on
condition.

RIGHTJ SS

Cancels the LEFT Justify command. RIGHTJ (RIGHT Justify), which is the
default condition, displays numeric entries right justified, which means they are
flush against the right margin of the cell. Left justification displays numeric
entries flush against the left margin of the cell. Text entries are automatically left
justified.

The cell cursor can be anywhere when you enter a RIGHTJ command. Only
numeric entries you make after the command is issued are affected. You can,
however, also change previous entries by moving the cell cursor back to each cell
and pressing return.

rightj Cancels LEFTJ and forces numeric entries to be displayed flush
against the right margin of the cell.

RINS SS

Inserts a blank row between filled rows. Rows below the inserted row are
moved one row down to make room for the inserted row.

Be careful when you use the RINS (Row INSert) command: RINS does not
adjust any formulas that are affected by a row insertion. Any formulas that refer
to cells below an inserted row will most likely be affected, and you will have to
change the formulas manually.

rins Inserts a blank row at the location of the cell cursor.

Example:

Example:

Example:

Section 3. Spreadsheet Commands 139

SF WP, SS

Lets you store the current spreadsheet work area on a disk. To store a file,
follow these steps:

1. Insert a formatted disk. Use the ID command to initialize it.
2. Issue the SF command.

3. Type afile name when the message SAVE FILE: is displayed on the status line.
You must give each file a name. The file name must be between 2 and 16
characters long.

4. If a file by the given name already exists on the disk, REPLACE Y/N is
displayed. Type Y inresponse to REPLACE Y /N unless you want to keep the
old copy of the file. In this case, type N and save the current file with a different
name. :

If youdo not have a formatted disk, insert a new disk and issue a FORMAT

command before the SF command.
You can verify that the file is stored by issuing a CA command, which

- displays a list of all the files on the disk. Make sure the number of blocks

assigned to the file is greater than zero. If the number of blocks is zero, the file
was not saved. Press RETURN and issue the SF command again.

sf Saves the spreadsheet file called budget.
SAVE FILE: budget

TF WP, SS

Lets you switch to the file manager program. You can issue the TF (To the File
manager) command at any time. The spreadsheet work area is not affected when
you leave the program. Use the TC command to switch back to the spreadsheet.
tf Switches to the file manager program.
™™W SS, FM

Lets you switch to the word processor program. You can issue the TW (To the
Word processor) command at any time. The spreadsheet work area is not affected
when you leave the program. Use the TC command to switch back to the

spreadsheet.

tw Switches to the word processor program.

140 The Built-In Software
THAW SS

Lets you cancel a FRE command, which protects a cell entry from being
changed by an inserted, deleted, or copied cell or by any change in the numeric
display format or a formula. The value of a frozen cell cannot be changed at all
until you cancel the freeze with the THAW command.

Once a frozen cell is THAWed, it is subject to changes like any other cell.

Example: thaw Cancels the freeze on a cell value.

TRANSFER SS

Lets you copy the contents of one cell into another cell. You can also use
TRANSFER, which is always represented by a left-pointing arrow, to put a
number into a cell. TRANSFER is never issued by itself; it is used as part of
IFTRUE and NOTIFTRUE compound formulas.

Example: 3;1=#55 iftrue 5;1 — #33 Transfer the number 33 into cell 5;1 if cell 3;1
equals 55.

$$ SS

Displays numeric cell entries with two decimal points, regardless of whether or
not the numbers were entered with decimal parts. If a number contains more than
two decimal places, the remaining numbers are simply chopped off; they are not
rounded. For example, if you are using the $$ (dollar) format and enter 12.9999,
the spreadsheet displays 12.99 in the cell. If you enter number 55, the spreadsheet
displays 55.00.

Current cell entries are not affected when you change the numeric display
format. If you change the format and want to adjust current cell entries, move the
cell cursor to each cell and press RETURN. The numeric entries will be converted

. to the current numeric display format.

Use the FL command to cancel a $$ format command.

Although the $$ format truncates decimal numbers with more than two
decimal places, the spreadsheet remembers the entire value you entered. If you go
back to floating-point format, send the cell cursor back into the cell and press
RETURN, the full decimal part will then be displayed.

Example: $$ Changes the format of numeric entries so that all numbers are dis-
played with two decimal places.

Section 4. The File Manager

The file manager lets you keep records of many types of information. You can
store addresses, product information, bibliographies, and any other sort of
information that can be adapted to a standard form.

Section 4. The File Manager 141

The file manager is organized into files, records, and fields. Each record in a file
contains a number of individual fields, such as name, state, or phone number.
You design the file yourself by setting the number, name, and length of fields. You
enter information into each field for each record. Then you store the records in
the file.

After file manager records are stored, you can display them again, sort them by
any field, search the records for a specific piece of information, create subfiles,
and send field information to the word processor for incorporation into a printed
document. The format instructions used for sending field information to the
word processor are explained in Section 2 of this chapter.

File Manager Commands

Example:

CA WP, FM, SS

Displays a listing of all the files on the current disk. The file CAtalog includes
the following information:

File names
File lengths (stated in blocks)

Blocks remaining on the disk

Spreadsheet files have a .c suffix appended to each file name. Word processor
files have no suffix. File manager disks (each file should have its own) show only
their name and blocks free. The total blocks free on the disk shows you how many
of the blank disk total of 664 blocks remain available.

The catalog information is displayed on a separate screen. The work area is not
affected; you can display a disk catalog at any time. When you finish looking at
the catalog and press RETURN, the intact work area is returned to the screen.

ca Lists a catalog of files on the current disk.
DS FM

Lets you sort a file by any of up to three fields. The sort creates a temporary
subfile of records reorganized by the sort criteria. You can use the subfile in
searches, in record reviews, or for printing multiple copies of a word processor
document. The DS (Disk Sort) command does not affect record numbers or
contents, but just the order in which records are organized.

When you want to sort by two or three fields, type the field numbers in the
order of sorting priority. To sort first by state and then by name, type the state
field number and then the name field number. Separate multiple field numbers
with semicolons (e.g., ds7;9;3;).

142 The Built-In Software

When you sort a file, the word processor work area is automatically cleared. If
you have work in the word processor work area, save it before you issue the DS
command. To perform a disk sort, follow these steps:

1. Insert the disk that contains the file you want to sort. Use the ID command to
initialize it. ‘

2. Type the DS command and the field number of the fields you want to use to
sort the file (e.g., ds5;3; sorts by the fifth field and then by the third field).

After you issue the DS command, the message SYSTEM WILL CLEAR
WORD PROCESSOR TO SORT Y/N?isdisplayed. Type Y to proceed or N to
abort the sort. While the sort is executing, the file manager displays the message
BEGIN DISK SORT ON with the field numbers of the sort. When the sort is
finished, the file name, number of records, and number of the last record stored
are displayed. '

Records are sorted using the CHRS code values of the contents of the sort
field(s). This means that fields containing only letters are sorted alphabetically
whereas fields containing only numbers are sorted numerically. Fields containing
a mixture of letters and numbers or punctuation marks (including blanks) may
not be sorted as you would expect. Refer to the CHRS code list in Appendix Cfor
the values used.

The sort creates a temporary subfile of the old file records rearranged. To
review the sorted file, use the RV (ReView) command. Records are displayed in
the sorted order, and the actual record number of each record is displayed at the
bottom of screen during the review. You can display individual records with the
RC (ReCord) command. Use the old record numbers, which are not changed
when the file is sorted. '

The subfile is destroyed when you turn off the computer, re-sort the file, or load
another file manager file. The subfile is not lost, however, when you switch to
another program. -

You can also terminate the subfile with the RESETLIST command, which
returns the file to its normal condition. -

Examples: dsg; Sorts the file by the second field.

ds4;7;1; Sorts the file first by field 4, then by field 7, and finally by
field 1. ' ‘
HIGHRC FM —

Sets an upper limit on the records to be included in a subfile. The record
number in the HIGHRC (HIGH ReCord) command prevents all those records
with higher record numbers from being accessed until the subfile is disbanded.

Example:

Section 4. The File Manager 143

To use the HIGHRC command, type HIGHRC and the record number you
want to be the last in the subfile. Type a semicolon at the end of the command.

The subfile is disbanded when you turn off the computer, load another file
manager file, re-sort the file, or issue a RESETLIST command.

highrc?5; Sets record number 75 as the highest record that can be
accessed.

NEWTF FM

Lets you design a new file. In the design process, you give the file a name, set the
total number of fields for the file, and give the names and maximum lengths for
each field. The field information you enter in the file design is used to prompt you
when you enter information for each record.

When you design a new file, have a new, blank disk ready. The disk need not be
formatted. Any information that is currently on the disk will be lost during the
new file construction. Each new file should be stored on its own disk. Never store
afile manager file on the same disk with other types of files, including files from
the other built-in programs. The file manager creates a large “file” using direct-
access disk commands. The file does not appear in the disk directory. Do not use
the BASIC COLLECT command on file manager disks. ,

When you first switch to the file manager, the message TYPE TF OR NEWTF
asks if you will be using an old file (TYPE TF) or creating a new one (TYPE
NEWTF). When you respond with NEWTF (NEW To File), the computer
displays the following prompts:

ENTER FILE NAME (1..16)

You give the file a name up to 16 characters long. This is used as the name for
the disk during formatting.

ENTER NUMBER OF FIELDS 1..17
01;

You enter the total number of fields the file will contain. The default is 1 and
the maximum is 17. Just type over the Ol to select a number. The trailing
semicolon is required.

ENTER FIELD NAME (1..35) FIELD # 01;
You enter the name of the first field. The name can be up to 35 characters long.

ENTER FIELD LENGTH 1..38 FIELD # 01;
01;

Example:

Example:

144 The Built-In Software

You enter the maximum number of characters to be entered in field 1. The
default is 1 and the maximum is 38. Just type over the 01 to select a number.
Again, the trailing semicolon is required.

The third and fourth prompts are repeated for each field until the total number
of fields (entered at the second prompt) are defined.

When you finish entering all the fields, the screen clears and a review of the file
design is displayed. A message telling you how many records you can store (999)
for the file is also displayed.

The computer also asks OK TO FORMAT DISK? Y/N. You should have a
new, blank disk ready. Insert it in the disk and type Y in response to the prompt
question. The formatting procedure takes a short time. When the computer
reports that the disk is ready, your new file design is stored on it. You are then
ready to enter records.

newtf Tells the file manager that you are ready to design a new file.

NR FM

Enters information into records. Unlike entering records with the RC
(ReCord) command, the NR (Next Record) command automatically moves to
the next record after each record is entered. The NR command saves time, and
you should use it instead of RC when you are entering a series of records.

To use the NR command, follow these steps:

1. Issue a TF command to display the record number of the last record entered if
you are adding records to a previously stored file.

2. Issue an RC command to display the first record you are going to enter. If you
are entering records into a new file, the first record would be RC1;, and if you
are adding records to an old file, the first record would be 1 plus the record
number named in the TF command as the last record entered.

3. Store the first record with the UD (UpDate record) command.

4. Issue an NR command to enter subsequent records. NR displays the next
record automatically.

5. Store each record with the UD (UpDate record) command.
6. Terminate the NR command by entering command mode and issuing a

command.

nr Displays a series of records so you can quickly enter information.

Example:

Section 4. The File Manager 148
PI FM

Lets you set limited criteria for the creation of a subfile. You can pick alpha-
betic or numeric ranges that limit the records included in a subfile. The range
applies to one field, which you specify when you issue the PI (PIck) command.
For example, you can PlIck a limited range of area codes from a phone number
field.

After the subfile is PIcked, you can search, sort, review, or transfer the records
to the word processor. For example, you can limit a sorted file to only those
records whose name field starts with A through F.

Note that while PI creates a subfile, it does not reorganize the records in-the
subfile. The records in a PIcked subfile are still arranged in the order the records
were entered. If you issue a HIGHRC command before you issue a PI command,
the PI command will use only the records whose numbers are less than the high
record.

The PI command looks for exact matches between the range limits you enter
and the entries in the records. The PI command distinguishes between upper and
lower case letters, so be sure to note this difference when you enter the range
limits.

To use the PI command, follow these steps:

1. Type pi and the number of the field you will use to pick a limited range of
records. End the PI command with a semicolon.

2. Type the low end of the PIcked range in response to the prompt BOTTOM:
and press RETURN. You can use one or more letters or numbers, a word, or
any phrase up to 38 characters long. For example, to PIck a subfile of zip codes
that begin with 190 through 194, you would type 190 as the BOTTOM of the
Plcked range.

3. Type the high end of the PIcked range in response to the prompt TOP: and
press RETURN. Again, you can use up to 38 characters as the range limit.

The PI command creates the limited subfile by searching all the records in the
file. While the PI command is executing, a left-pointing arrow is displayed for
each record that is put in the subfile.

To review the Plcked subfile, issue an rvl; command. You can also issue
commands to sort or search the PIcked subfile.

Use RESETLIST to delete a PIck subfile.

piS5; Uses field number 5 as the basis for the PIcked subfile.
BOTTOM: My Sets My as the bottom of the Plcked range.

Example:

146 The Built-In Software

TOP: Q Sets an uppercase Q as the high end of the PIcked range.
With these limits, the subfile will contain entries from
field 5 that start with My through Qy.

RC FM

Displays any record. You can also use the RC (ReCord) command to enter
information into a record. The RC command displays the record whose record
number you give in the command. You can display a filled record or an empty
record. Unlike the RV (ReView records) command, which displays all the records
in a series, the RC command displays only one specific record. Once the record is
displayed, you can make changes if you like.

When you display an empty record, you can enter 1nformat10n into it. Unlike
entering records with the NR (Next Record) command, the RC command does
not automatically move to the next record after each record is entered. Use RC
when you are entering just a few records at a time, and use NR when you are
entering a series of records.

To use the RC command to display a record, type RC and the record number
of the record you want to display followed by a semicolon.

To use the RC command to enter a record, follow these steps:

1. Issue a TF command to display the record number of the last record entered if
you are adding records to a previously stored file.

2. Issue an RC command to display the first record you are going to enter. If you
are entering records into a new file, the first record would be RC1;, and if you
are adding records to an old file, the first record would be 1 plus the record
number named in the TF command as the last record entered.

3. Store the first record with the UD (UpDate record) command.

4. Issue another RC command to enter the next record. You must enter another
RC command for each record you enter.

5. Store each record with the UD (UpDate record) command.

rc3d; Displays record number 3, which may or may not be a filled record.
You can view it or change it if it is filled, or you can enter informa-
tion if it is not filled.

RESETLIST FM

Cancels any type of subfile. The RESETLIST command disbands sorted
subfiles, searched subfiles, and subfiles set by the HIGHRC or PI (PIck) com-
mands. RESETLIST has no effect on the contents of the records; it is NOT like
the spreadsheet RESET command.

Example:

Examples:

Section 4. The File Manager 147

Because RESETLIST restores the file to its original organization, you should
use it before you create a subfile when you want to be sure a previous subfile does
not affect your current project.

resetlist Restores the file to its original organization by canceling a
subfile.

RV FM

Displays the records in order. If the file has been reorganized into a subfile, the
records are displayed in subfile organization with the actual record number also
displayed on the screen. The RV (ReView) command starts with the record whose
number you give in the command and continues through the file, dlsplaymg each
record quickly.

To speed up the review, press the space bar. To slow it down, press the S key.
To end the review, press the Q key.

Use the RV command to make a quick review of a new file or a newly created
subfile or to scan for a particular record whose number you do not remember. To
use the RV command, type rv and the number of the first record you want to
review, followed by a semicolon.

rvl; Quickly displays all the records in the file or subfile, starting at
' record 1.

rva8; Starts the review at record 25.

SR FM

Looks through records to find those that contain data you specify. You can
search for any letters or numbers up to 38 characters in length. The SR (SeaRch)
command searches every field; the search is for a character match rather than for
the contents of a specific field. In other words, the SR command does not search
just one field in each record. The search criteria cannot spread into two fields. For
example, if you are searching for New York and the words New and York appear
in separate fields in a record, this is not considered a match.

To use the SR command, type sr and press RETURN. When the prompt
SEARCH is displayed, type the characters you want to find in the records. Unlike
the PI (PIck) command, the SR command does not distinguish between upper
and lower case letters, so Computer and computer are considered equal.

If there is no subfile, the SR command begins its search with record 1 and
sequentially investigates every record in the field. If there is a subfile, the SR
command searches records according to the organization of the subfile.

As a search executes, each record that contains a match is displayed. The
message CONTINUE Y/N is also displayed. If you want to continue searching
for more instances of a match, type Y. If you want to abort the search, type N.

Example:

Example:

Example:

Example:

148 The Built-In Software

sr Initiates a search that will look through each field in
SEARCH: 1919 each record to find the numbers 1919.

TC WP,FM

Lets you switch to the spreadsheet program. You can issue the TC (To the
Calculator) command at any time. Use the TF command to switch back to the file
manager.

tc Switches to the spreadsheet program.
TF WP, SS, FM

In the file manager, the TF command tells the computer you want to use an
already stored file. Enter TF to use an old file when the file manager displays the
message TYPE TF OR NEWTF. You can issue a TF command at any time to
display the record number of the last record entered. This information is useful
when you are about to add more records to a file.

The TF command displays the following information about the current file:

The file name

The number of records used of the original 999

The record number of the last record entered

If a subfile has been created and is still in effect, the top of the status report

displays the number of records in the subfile. The last record entered is displayed
on the second line of the status report.

tf Displays information about a stored file and about a subfile if one is
present.

TW SS,FM

Lets you switch to the word processor program. You can issue the TW
command at any time. Use the TF command to switch back to the file manager.

tw Switches to the word processor program.
UD FM

Stores arecord on the disk. Use the UD (UpDate) command after you enter or
change a record with either the RC (ReCord) or NR (Next Record) command.

Examples:

Section 4. The File Manager 149

The UD command stores the current record with the record number currently
displayed unless you specify some other record number in the UD command.

You can also use UD as a shortcut to make duplicates of a record or when you
want to store a record that is almost identical to the current record. To store a
record with a record number other than the one displayed on the screen, just
include a record number in the UD command. For example, if you are storing
records of a stamp collection and have two similar stamps, enter and store the
first stamp as record 1. Then change the record while record 1 is still displayed on
the screen. Save this version of the record with the command ud2;.

ud Stores the current record.

ud3?; Stores the record information currently on the screen as record
number 37.

Some Progra,mming
Techniques

The BASIC built into the Commodore Plus/4, Version 3.5, is the most powerful
and versatile version of BASIC that Commodore has ever used in a computer.
This chapter explains some of the major programming techniques you can use in
writing BASIC programs as well as a few machine language techniques. These
include the following topics:

Using the screen editor

Using the Escape key screen editing functions

Using screen windows

Using text strings

Redefining the function keys

Using mathematical functions

Programming sound and music

Using arrays

UnNEWing programs

Using the built-in error-trapping routines

Each of these topics is covered in a separate section of the chapter. Sample
programs are used to illustrate the use of each technique.

For explanations of all BASIC commands, see Chapter 1. For extensive

information on programming graphics, see Chapter 4. For in-depth descriptions
of commands for handling disk drives and other peripherals, see Chapter 6.

180

Using the Screen 181

Using the Screen

The computer screen is 40 columns by 25 lines, which means it can display 1000
characters at a time. These 1000 character places have their own locations in
memory in what is called the Screen Memory Map.

The top left corner of the screen has a memory address of 3072 ($0C00). The
character just to the right of that location has an address of 3073. The bottom
right corner of the screen is at address 4071 (SOFE7). Each character position on
the screen has a specific address.

Each time you type a character or the computer displays one, the computer
updates the screen memory at the character position where the new character
appears. For example, if you type SCNCLR, the computer clears the screen and
displays the READY. prompt on the second line of the screen. At this point,
screen memory address 3112 contains an R, address 3113 contains an E, and so
on. All other screen memory addresses contain a blank. The values stored in
screen memory to display characters are not the same as CHRS code values. See
Appendix E for a list of screen display codes.

A screen memory location is updated every time that character position gets a
new value. When a line moves up because the screen scrolls up, the characters in
the line are removed from the old memory locations and are registered in the new
locations. Screen memory has only one task: to keep track of each character
position on the screen. It does not evaluate the text on the screen for errors; that is
done by the computer when you press the RETURN key.

POKEing and PEEKing

Examples:

You can use the POKE command to put a specific character at a specific screen
location. Use the screen memory locations and the screen display codes listed in
Appendix E (not the CHRS codes) in POKE commands.

You can also POKE acolor into the color memory location corresponding to a
character position. The color of each character position is registered separately
from the character itself. The color memory map, which is similar to the screen
memory map, begins at memory location 2048 ($0800) (the top left corner of the
screen) and ends at location 3047 (08 E7) (the bottom right corner of the screen).

10 INPUT”PLAYER'S SUIT”;S$
20 IF S$ = "HEARTS"THEN Puts a red (color = 3-1; luminance

POKE 3441,83: POKE 2417,2+16+4 = 4) heart symbol at column 9,

row 9 (columns and rows counted
from 0).

183 Some Programming Techniques

You can find out what value is at a memory location by using the PEEK
function. PEEK returns the code that stands for the current occupant of the
memory location into which you are PEEKing. For example:

PRINT PEEK(3441) Displays the screen display code for the character
83 at screen memory location 3441.

You can POKE and PEEK values at memory locations other than just the
screen memory.

Program Lines

Each program line can take up to 88 characters, which is just over two lines on the
screen. If a line is longer than 88 characters, the computer rejects the line and
displays the 2STRING TOO LONG ERROR message as soon as you press
RETURN.

The computer requires a RETURN key press for every program line. When
you press RETURN, the computer interprets the BASIC and stores it in the
program area of memory as tokenized BASIC. If there is already a line with that
line number in memory, the old line is replaced by the new line. When you return
to a line to make changes, you must press RETURN to register the changes, and
you can press RETURN anywhere in the line.

Using the abbreviations for BASIC keywords can allow you to fit extra
commands on a line. When the line is printed, the keywords are spelled out. This
means you cannot cursor up to the line and reenter it using the RETURN key.
You must retype such long lines to change them.

Copying Program Lines without Retyping

When you enter program lines, the information is stored in program memory and
(as long as the lines appear on the screen) in screen memory. These memory areas
operate independently, so you can change one area without necessarily changing
the other. For example, if you go back to a line and make some changes, those
changes are immediately updated in screen memory. The changes are not updated
in program memory, however, unless you press the RETURN key while you are
somewhere on that program line. If you do not press RETURN and just move off
the line with a cursor key, the changes are not entered into program memory even
though they are registered in screen memory. The contents of screen memory last
only as long as the information appears on the screen.

When you are typing in a program, you can save time by taking advantage of
the computer’s screen editing features. If you are typing a line that is similar to
one already on the screen, you can cursor to that line, change the line number and

Using the Screen 183

anything else in the line, and then press RETURN. The computer accepts the line
with the new number and retains the old line, too, as long as you remember to
change the line number. If you forget to change the line number, the modified
version of the line will replace the original version.

The program area of memory is not the same as screen memory, so even though
the old line has been overwritten in screen memory, both lines can be intact in
program memory. You can verify that both copies of the line are in program
memory by LISTing the program. For example, type this line and press
RETURN:

10 INPUT"WHAT'S YOUR NAME”;N$

Now cursor back to the line number. Change it to 20, cursorto YOUR NAME
and change it to THE DATE, delete the E from NAME, change N§ to D$, and
press RETURN. The screen should look like this:

20 INPUT"WHAT'S THE DATE”;D$

Line 10 no longer appears on the screen, but it is still in program memory. Issue
a LIST command to display the program, which should look like this:

10 INPUT"WHAT'S YOUR NAME";N$
20 INPUT"WHAT'S THE DATE";D$

Remember to press RETURN after you make changes to a line (if you want to
keep the changes, that is). It is a good idea to LIST a program after you make
changes so that you can verify that the changes were made in program memory.
Even experienced programmers sometimes forget to press RETURN.

Quote Mode

When you type a quotation mark, quote mode is turned on and everything you
type is subject to quote-mode rules. Quote mode is turned off when you type a
second quotation mark, when you press the RETURN key, or when you issue an
ESCAPE O sequence. '

The following rules define quote mode:

1. The computer does not interpret any characters typed inside quotes, so you can
type anything in quotes without getting a SYNTAX ERROR message when
you execute the command. All non-BASIC characters can and must be
enclosed in quotes except information appearing in REM or DATA statements.

2. Commands do not execute in quote mode.

184 Some Programming Technigues

3. Many key functions, such as cursor-control and color-change keys, do not
execute immediately. When you press one of these keys, a special reversed-
image symbol is displayed. These symbols stand for keyboard-controlled
functions that do not execute until the quote mode is turned off and the
command is run.

Insert Mode

When you press the INSERT key, you enter insert mode. While you are in insert
mode, some key functions, such as cursor control and color change keys, do not
execute immediately. When you press one of these keys, a special reversed-image
symbol is displayed. These symbols stand for keyboard-controlled functions that
do not execute in insert mode. They will not execute at all unless they are also in
quote mode. In fact, you end up with a syntax error if you leave one of these
function symbols in a command, so be sure to delete them unless they are in
quotes and you want them to remain.

Insert mode ends when you type as many characters as the number of times you
pressed the INSERT key, when you press RETURN, or when you issue the
ESCAPE O sequence. If you want to get rid of the inserted spaces without
pressing RETURN or typing characters, press the DELETE key until the inserted
spaces are deleted. The DELETE key does not actually start deleting right away.
A reversed T is printed in the inserted spaces until they are all filled.

Note that these deferred restrictions do NOT apply when you are in automatic
insert mode, which you enter by pressing ESCape and A and cancel with ESCape
C.

Table 3-1 shows the keys that do not execute in quote mode. This table also
shows the one-character symbols that represent these keys.

You can directly embed the symbols for most of these functions in quote mode
by pressing the indicated keys. The exceptions are the REVERSEd codes. RE-
VERSEd H, I, and N can be entered in quote mode by pressing CONTROL H, I,
and N. For REVERSEd SHIFTed N and M, leave a blank space in the quote
mode text string where you want one of these functions to appear. Then exit
quote mode and cursor back to the blank space in the text string. Once you are in
position, turn on reverse mode (with CONTROL 9) and press the appropriate
SHIFTed key. The symbol from the chart is displayed in the text string, and the
function is deferred until you execute the command that contains the text string.

Clearing the Screen During Program Execution

You can use the CLEAR key to clear the screen during program execution. To
use this key, press SHIFT/CLEAR in quotes in a command such as PRINT or
INPUT, or use the CHRS code for the CLEAR key, which is 147.

Using the Screen

TABLE 3-1. Special Quote Mode and Insert Mode Characters

188

Key Displays Function Embedded
CURSOR UP Move the cursor up a line.
CURSOR DOWN Move the cursor down a line.

CURSOR LEFT
CURSOR RIGHT
INSERT

DELETE

CLEAR

HOME

CONTROL BLACK
CONTROL WHITE
CONTROL RED
CONTROL CYAN
CONTROL PURPLE
CONTROL GREEN
CONTROL BLUE
CONTROL YELLOW
ORANGE
BROWN
YELLOW-GREEN
PINK
BLUE-GREEN
LIGHT BLUE
DARK BLUE
LIGHT GREEN
CONTROL RVS ON
CONTROL RVS OFF

e e el o
.e.

CONTROL FLASH ON
CONTROL FLASH OFF

REVERSED H
REVERSED I
REVERSED SHIFT M
REVERSED N
REVERSED SHIFT N

EE=Ee T

i

<]

EERNEEIRETR -~

]
=

N=E==NEE=EE

Move the cursor left a space.

Move the cursor right a space.

Prepare to insert a character.
Delete a character.

Clear the screen.

Send the cursor to upper left.
Make character color black.
Make character color white.
Make character color red.
Make character color vcyan.
Make character color purple.
Make character color green.
Make character color blue.
Make character color yellow.
Make character color orange.
Make character color brown.

Make character color yellow-green.

Make character color pink.

~ Make character color blue-green.
Make character color light blue.
Make character color dark blue.

Make character color light green.

Turn on reversed mode.

Turn off reversed mode.

Turn on flashing.

Turn off flashing.

Disable €8 SHIFT keys.
Enable '@ SHIFT keys.
Disabled RETURN character.
Switch to upper/lower case.

Switch to upper case/ graphics.

Note: The uppercase characters shown boxed above appear reversed on your screen.

156 Some Programming Techniques

Example: 10 INPUT “PROJECT NAME";P$ |
20 PRINT CHR$(147);"A REPORT ON “;P$

Instead of using the CHRS code for the CLEAR key, you can type the opening
quote, press the CLEAR key (with SHIFT), and then type the rest of the PRINT
message. The CLEAR key appears in quotes as a reversed heart.

20 PRINT “[KllA REPORT ON ”;P$

You can use the SCNCLR command in a program line to clear the screen
during program execution. SCNCLR has no parameters.

Example: 10 INPUT “PROJECT NAME";P$
18 SCNCLR
20 PRINT “A REPORT ON “;P$

Clearing Graphic Mode Screens

To clear a graphic mode screen while you are in a graphic mode, use SCNCLR.
When you issue SCNCLR in a graphic mode, only the graphic mode screen is
cleared. When you issue a SCNCLR command in a text mode, the text screen is
cleared, but the graphic mode screen is not cleared. When you issuea SCNCLR in
asplit-screen graphics mode, both the text and graphics mode screens are cleared.

If you are just issuing the GRAPHIC command to enter a graphic mode, clear
the graphic mode screen by adding a ,1 to the end of the GRAPHIC command
(e.g., GRAPHIC 2,1).

You can clear the text screen in a split-screen graphic mode screen by pressing
the CLEAR key (with SHIFT), but this is not the best way to clear this area.
When you press CLEAR, the cursor goes to the cursor-home position—the very
top of the screen, which is not visible in split-screen mode. You have to cursor
back manually to the text window at the bottom of the screen. It is much simpler
just to scroll the text out of the text window by pressing the cursor down key five
times. If you do a lot of work in a split-screen mode, you could set a screen
window consisting of the bottom five (text) lines of the screen. Then,a SCNCLR
command or the CLEAR key would clear only the window and leave the cursor at
the top left of the text area of the screen.

Using the Escape Key Functions to Control the Screen

The Plus/4 has 17 ESCape functions that you can use to edit or otherwise control
the screen. These functions, which are explained in subsequent sections, include
the following types of operations:

Using the Escape Key Functions to Control the Screen 187

Scrolling controls

Cursor controls

Deletion and insertion operations
Screen-size reduction

Screen windowing

The ESCape key functions are described briefly in Table 3-2.

ESCape functions are a key sequence of the ESCape key and one other key. To
use any of the ESCape functions, press the ESCape key, release it, and then press
the other key. Be sure to release the ESCape key before you press the second key.

Four ESCape functions have continuous operation after you turn them on:
automatic insert mode, screen window settings, scrolling on and off, and screen
display-size reduction. The other escape functions execute only once; to repeat
them, you must repeat the ESCape key sequence. The four continuous ESCape
functions have their own cancel-function sequences. The one-time-only ESCape
- functions cannot actually be canceled because they occur only once, and their

TABLE 3-2. ESCape Key Functions

Second Escape
Key Function

Turn on automatic insert mode.

Set screen window bottom right corner.

Cancel ESCape A, automatic insert mode.

Delete the current line.

Insert a blank line.

Move the cursor to the beginning of the current line.

Move the cursor to the end of the current line.

Turn on normal scrolling.

Cancel normal scrolling.

Cancel ESCape R, so normal screen size is reset.

Cancel manual insert, quote, reverse, and flashing modes.

Erase all characters from the beginning of the current line to the
current cursor position.

Erase all characters from the current cursor position to the end of
the current line.

Reduce normal screen display size.

Set screen window top left corner.

Scroll up one line.

Scroll down one line.

TOZZCR="TOUOW>

£<H® ©

188 Some Programming Techniques

functions cannot be reversed by a cancellation (although in most cases there is
another ESCape key function that has the opposite effect). |

Note: If you press the ESCape key and then decide not to press the second key
in a function sequence, the cursor is temporarily frozen until you press any one
key. Obviously you should not press one of the 17 keys that activate an ESCape
function. You also should not press a function key or the CONTROL or & keys
because they have no effect. Press the space bar or one of the cursor keys to thaw
the cursor and resume normal operations.

Canceling Insert, Quote, Reversed-Image, and Flashing Modes

You can quickly cancel insert mode, quote mode, reversed-image mode, or
flashing mode by issuing the key sequence ESCape O. Although each of these
modes can be terminated by other means, ESCape O is a convenient alternative.
ESCape O is especially useful for turning off quote mode when you need to make
corrections inside quotes. ,

Note that ESCape O cancels insert mode only when you turn this mode on with
the INSERT key. ESCape O does not cancel automatic insert mode, which is
turned on with ESCape A and canceled with ESCape C.

Cursor-Control ESCape Functions

Y ou can quickly move the cursor to the beginning or the end of the current line by
using the ESCape J and ESCape K functions. ESCape J moves the cursor to the
first column of the current line. ESCape K moves the cursor to the last character
(not the last column) in the current line. If the cursor is already on or past the last
displayed character on the line, ESCape K has no effect on the cursor. ESCapeJ
always moves the cursor to column 1 regardless of whether or not there is a
character displayed in that column.

If you use ESCape J or K while the cursor is on a BASIC command that takes
up two lines, ESCape J moves the cursor to the first column of the first line even if
the cursor is somewhere on the second line. ESCape K moves the cursor to the last
character of the second line regardless of whether the cursor is on the first or
second line of the two-line command.

Scrolling-Control ESCape Functions

Under normal operating conditions, the screen display scrolls continuously. You
can turn off normal scrolling so that the cursor stops scrolling when it reaches the
current bottom line on the screen. To turn off scrolling, issue the ESCape M
sequence. When scrolling is off, the cursor returns to the top of the screen (in the

Screen Editing 1589

same column) when you cursor past the bottom line. Text on the screen does not
move.] ‘

To turn normal scrolling back on, issue the ESCape L sequence.

You can make the screen display scroll up or down one line at a time with the
ESCape V and W sequences. ESCape V moves the screen display up one line;
ESCape W moves it down one line. The cursor can be located anywhere on the
screen; it does not have to be at the top or the bottom line. ESCape W always
displays a blank line at the top of the screen as text lines are moved down a line at
atime. ESCape V always displays a blank line at the bottom of the screen as text
lines are moved up a line at a time.

Both ESCape W and ESCape V functions work when scrolling is turned off by
ESCape M. In fact, ESCape V is the only way to scroll the top line off the screen
when normal scrolling is turned off.

Screen Editing

Previous sections in this chapter on screen editing have demonstrated some of the
techniques you can use to correct errors, save typing time, clear the screen (or just
delete some lines from it), and change the screen colors. Besides the features
described in these sections, you can also use the Escape functions to edit the
screen.

1. Inserting and deleting characters and lines on the screen.

2. Changing the screen size.

Insertion/deletion and changing screen size are especially useful when you are
working on programs.

Automatic Insert Mode

The INSERT key lets you add as many characters as the number of times you
press the INSERT key. We might call this method of character insertion a manual
insert mode. Automatic insert mode, when engaged, lets you insert as many
characters as you like. Automaticinsert mode saves time when you want to insert
more than one or two characters.

To turn on automatic insert mode, press the ESCape key and then the A key.
From then until you cancel the mode, all the characters you type are in insert
mode; regular insert mode rules are in effect. The cursor can be located anywhere
on the screen when you turn on automatic insert mode.

When you issue a RUN command while you are still in automatic insert mode
and there is information on the screen beneath the line where you issued RUN,

160 Some Programming Techniques

the output of the execution of the program is inserted above the old data. The old
data are pushed ahead of the execution output.

Canceling Automatic Insert Mode

Cancel automatic insert mode by pressing the ESCape key and then the Ckey. As
soon as you issue this key sequence, normal conditions return. Note that ESCape
O cancels manual insert mode but not automatic insert mode.

Deleting the Current Line
The ESCape D function lets you erase a line on the screen. To use ESCape D,
move the cursor to the line you want to erase; then press the ESCape key and then
the D key. The current line is deleted, and any following lines are moved up one
line to fill in the gap. You can erase additional lines by repeating the key sequence.
If the line is part of a BASIC line that is longer than one screen line, the entire
BASIC line is deleted from the screen display.

The ESCape D function edits only what is on the screen, not what is in the
program area of memory. This means that lines deleted by the ESCape D
sequence are erased from the screen but not from the program. If you LIST the
program after you use ESCape D to delete a line, you will see that the line is stillin
the program. You can use the DELETE command to remove a line from a
program.

' Inserting a Blank Line

The ESCape I function lets you insert a blank line between two lines anywhere on
the screen. To use ESCape I, move the cursor to the line where you want to insert
a blank line; then press the ESCape key and then the I key. A blank line is
inserted, and any following lines are moved down one line to make room for the
new line. You can add additional blank lines by repeating the key sequence.

Erasing Partial Lines

ESCape P and ESCape Q erase partial lines. ESCape P erases all characters that
precede the cursor and the character under the cursor. ESCape Q erases all
characters that follow the cursor and the character under the cursor. The cursor
does not move when you execute either of these sequences.

If you are using ESCape P or ESCape Q to erase part of a program line and

Example:

Screen Editing 161

that line is longer than 40 characters (i.e., it extends onto the next screen line), the
entire program line is affected, not just the current screen line. , ,

If you press RETURN after you erase a partial line, the part of the line you
erased is deleted from program memory as well as from the screen. If you do not
press RETURN before you leave the line, the original line remains intact in
program memory. If the part of the line remaining would create a syntax error if it
were executed, be sure to correct the line before you run the program. In many
cases after you issue an ESCape P, the remaining characters will create a syntax
error because you have erased the BASIC keyword.

10 PRINT “THE SECRETARY WILL DISAVOW AN
Y KNOWLEDGE OF YOUR ACTIVITIES”

If the cursoris on the Tin SECRETARY and youissue an ESCape P, the line will
look like this (the cursor remains where the T was):

ARY WILL DISAVOW AN
Y KNOWLEDGE OF YOUR ACTIVITIES”

If the cursor is on the Tin SECRETARY and you issue an ESCape Q, the line will
look like this (the cursor remains where the T was):

10 PRINT “THE SECRE

Reducing the Screen Display Size

You can slightly reduce the size of the screen display with ESCape R. The normal
screen is 40 columns by 25 lines. The reduced screen is 38 columns by 23 columns.
The size is not optional; if you want to reduce the screen display further, you must
create a screen window. The purpose of the function is to accommodate certain
TV sets that cannot fully display the entire 40-by-25 screen.

As soon as you switch between normal and reduced screen display, the screen is
cleared and the cursor is displayed at the cursor-home position at the top left

- corner of the screen. The cursor-home position in reduced screen display mode is

at the column 2, line 2 position of normal screen display mode.

To cancel the reduced screen and return to the normal-sized screen, issue an
ESCape N sequence. The screen clears and the cursor returns to the normal
cursor-home position. Note that ESCape N cancels screen windows. Pressing the
HOME key twice also cancels the reduced screen mode.

Note: The ESCape R sequence changes only the logical size of the screen. A bit
on the graphics chip can be used to bring the border in over the unused row and
columns. See Chapter 4.

163 Some Programming Techniques

Setting a Screen Window

You can create a screen window of any size and in any part of the screen. When
you set a screen window, all new text appears in the window work area. The rest
of the screen contents remain unaffected, so you can view other material while
you use the window work area. If you set the window over any characters already
on the screen, the old characters are typed over.

To set a screen window do the following:

1. Move the cursor to the line and column you want to be the top left corner of the
screen window.

2. Press the ESCAPE key and then the T key.

3. Move the cursor to the line and column you want to be the bottom right corner
of the window.

4. Press the ESCAPE key and then the B key.

After the screen window is set, all text is displayed in the window. The rest of
the screen remains as it was when you set the window. Screen windows are
particularly useful for debugging programs and for working out parts of a
program.

Releasing a Screen Window

To return to full screen display, press the HOME key twice. The cursor appears in
the cursor-home position of a full screen (a reduced screen is forgotten). The
screen is not cleared when you create or release a window.

Issuing an ESCape Function in a Program

There are several ways to include an ESCape function in a BASIC program. For
example, you can type an ESCape sequence in response to an INPUT command.
You can use the CHRS code for the ESCape key (27), and then the GETKEY
command to input the second key in the sequence:

80 GETKEY A$
90 PRINTCHR$(R7)+A$

You can include specific ESCape sequences by using the CHRS codes for both
keys. In the following example, CHR$(65) stands for A, which turns on auto-
matic insert mode, and CHR$(87) stands for W, which scrolls down one line,

Using Text Strings 163

thereby moving the cursor up one line. Line 200 goes back to the message printed
by line 120 and alters the message if X is less than zero after line 130.

100 INPUT X
120 PRINT”ACCEPTABLE CONDITIONS”
130 X=X-4

140 IF X >0 THEN 100

160 X$=CHR$(27)+CHR$(65)

180 Y$=CHR$(27)+CHR$(87)

200 PRINT Y$+X$+"WARNING! UN";
RUN

23

WARNING! UNACCEPTABLE CONDITIONS

Note that if you set a screen window, turn on automatic insert mode, turn off
scrolling, or reduce the screen display size during a program, these continuous
ESCape functions will remain in effect after the program has finished running.

Using Text Strings

A text string can contain up to 255 characters, including blank spaces. Any
character can appear within a literal constant text string except for a quotation
mark. A quotation mark delineates the opening or closing of a literal constant
text string and cannot appear as a character within a string. If you want to include
a quotation mark within a text string, you must use the CHRS value for the
quotation mark, which is 34.

Literal constant text strings must be typed in quotation marks except when
they appear as constants ina DATA list. Quotation marks are optional for strings
in a DATA list unless they contain colons or commas.

Text-String Variables

A text-string variable can represent any text string. Text-string variables have a $
sign as the final character in the variable name (e.g., X$, W28$).

When you assign a text string to a variable, you must use a text-string variable.
A TYPE MISMATCH error occurs if you assign a text-string constant to a
different type of variable or you assign a number to a text-string variable. If a
number is included in a text string, the number is considered to be part of the text
string, has no mathematical value, and cannot be used in any mathematical
operation.

An.empty text-string variable is called a null string. It has length zero and can

164 Some Programming Techniques

be created with a literal string constant consisting of only a pair of quotation
marks (with nothing between them).

Input from keys on the keyboard is considered to be a text string, so you must
use a text-string variable to read a key. For example, you must use a string
variable in the GETKEY command to tell the computer to accept a single pressed
key as input.

Note: It is possible to use a numeric variable with a GETKEY command.
Pressing a digit (0-9) results in that single digit’s value being assigned to the
numeric variable. Pressing any other key results in an error. The error aborts the
program unless it is TR APped.

Combining String Values

You can use the plus sign to concatenate multiple text strings, including string
“variables and string functions. When you are combining text strings, you must
type the plus sign outside the quotes (e.g., "DATA” + "BASE").

Concatenated strings are compressed into one value. No spaces are added
between two strings (e.g., "DATA” + "BASE” equals "DATABASE”). The strings
are concatenated from left to right.

Use the plus sign in compound function key definitions. For example, to define
a function key to list and then run a program, you can use the following
definition:

KEY 3, “LIST” + CHR$(13) + "RUN” + CHR$(13)

The plus sign is the only arithmetic operator you can use with text strings. You
cannot use the minus sign to remove characters from a string; instead, use the
RIGHTS, LEFTS, and MIDS$ functions to get substrings.

Comparing String Values

You can use text strings in comparisons just as you use numbers. All six compari-
son operators (=, <>, >, <, <=, and >=) can be used to compare text strings.

You cannot compare a text string or text-string variable with a numeric value.
If this illegal comparison is attempted, a TYPE MISMATCH error aborts the
program unless it is TRAPped.

When you use the equal or not equal signs to compare text strings, the
computer reads the strings character by character, checking for an exact match,
including blank spaces. For example, “STRING” <> “STRING” is true be-
cause the second string contains a blank space that is not present in the first
string.

Using the String Functions 168

When you use the other comparison operators to compare text strings, the
computer reads the strings character by character, checking for which string’s
current character is greater or less based on the character’s character code
number (CHRS value). A has the lowest value, Z the highest, so characters are
checked for standard alphabetical order, although the comparison is actually
done by numeric values for each letter of the alphabet. Shifted characters are
always greater than unshifted characters. See the CHRS value list in Appendix C.

When numbers in text strings are compared, the computer treats them as a
character (CHRS) code number. All numbers have lower character codes than
any letter, so 9 is less than A.

Examples of Text String Comparisons

10 INPUTT .

20 A$ = "BIT” + STR$(T) Makes AS$ equal to the
30 PRINT “A$ ="; A$ string "BIT” plus the
RUN : value of T converted to a
? 2 string value by the STRS
A$=BIT2 function.

NEW

10 DO:INPUT K$ Compares the value

20 PRINT "GO”:LOOP WHILE K$ <> “STOP” input for K$ to the string
"STOP”. The loop con-

NEW tinues while K$ is not
equal to "STOP”.

10 INPUT X$ Checks the first charac-

20 IF LEFT$(X$,1) <"L” THEN ter of X$, input in line

GOSUB 100: ELSE PRINT “PAST RANGE” 10. If the character is less

RUN than L (A-K), the pro-

? MIDDLE , gram branches to a sub-

PAST RANGE routine. Otherwise the

' PAST RANGE is
printed.
Using the String Functions

BASIC Version 3.5 contains 14 functions that operate using text strings:

® ASC returns the character (CHRS) code of the first character in the string.

® CHRS returns the character string represented by its character code.

166 Some Programming Techniques

DEC returns the decimal value of a hexadecimal string.
DSS$ returns the contents of the disk drive error channel (see Appendix A).
ERRS returns a message that describes an error condition.

HEXS returns a hexadecimal text string for a decimal value.

INSTR finds a string embedded within another string and returns its start
position.

LEFTS returns the leftmost characters in a string.

® LEN returns the number of characters in a string.

MIDS returns a character string within another string or replaces a substring in
a character string.

RIGHTS returns the rightmost characters in a string.
STRS$ converts numeric values into text strings.

TI$ returns the current value of the system clock.

VAL converts numbers in a string into a numeric value.

Each of these functions is described in Chapter 1. The following sections of this
chapter provide additional information about some of the functions. More
information about ERR$ appears under the section about error-trapping
techniques.

When any of these functions contains a text string as a parameter in paren-
theses, you can use any of the following forms of text-string representation:

A literal constant text string

A text-string variable

A text-string array variable

A character code in the form CHR$(code)

A concatenation (using +) of any of the above
Any numeric parameter in a string function can be in any of these forms:

A number
A numeric variable
A numeric array variable

A mathematical formula

Using the String Functions 167
The Substring Functions: LEFT$, RIGHT$, and MID$

The functions LEFT$, RIGHTS, and MIDS$ can be used to form a substring of a
text string. Use these functions to check input or to assign part of a string to a
string variable. These functions are frequently used in conditional statements.
For example, you can use LEFTS$ to check the first letter of the input.

Each of these functions can return up to 255 characters, which is the maximum
length of a string. If the substring is longer than the master string, the computer
returns the entire master string (starting from the function starting point).

The parameters for each function are enclosed in parentheses. The first
parameter for each of these functions is the master string, which can be any legal
string. The second parameter in the LEFTS$ and RIGHTS functions is the length
of the substring. The second MID$ parameter is the starting location for the
substring. The third MID$ parameter is the substring length.

The LEFTS substring begins at the leftmost character in the master string and
continues for the specified number of characters. The RIGHTS$ substring has-the
specified length and ends at the rightmost character in the master string. The
MIDS§ substring can begin at any character position in the master string and
continues for the specified number of characters.

Examples: 10 Y$ = “"REDWHITEBLUE”

20 X$ = MID$(Y$.4,5) X$ is the word WHITE.
PRINT LEFT$("RED” 4) The string contains only
RED three characters, so

only three are printed.

10 INPUT "DO YOU WANT TO CONTINUE”; A$ Searches text string AS,
20 IF LEFT$(A$,1)="Y” THEN GOSUB 70: input in line 10, for
ELSE END _ the string Y.

Finding the Length of a String: the LEN(X$) Function

LEN counts the total number of characters in a text string. Any text string can be
counted. Blank spaces and punctuation marks count as characters in the string.
For example “HO HO!” has six characters. You can use any string expression,
even a text-string array element, as the LEN parameter.

The following example uses array elements as string function parameters:

5 DIM F$(49),L$(49)

10 FOR X = 0 TO 49

20 INPUT “NEXT NAME”;L$(X)
30 FE=INSTR(L$(X),” ")

168 Some Programming Technigues

40 IF FE>O0 THEN F$(X)=LEFT$(L$(X),FE-1):
L$(X)=RIGHT$(L$(X),LEN(L$(X))-FE)
50 PRINT “LAST NAME: “;L$(X);:
IF LEN(F$(X))>0 THEN PRINT ” FIRST NAME: ";F$(X);
60 PRINT:NEXT

LEN can be used to figure a parameter in a LEFT$, RIGHTS, or MID$
function. For example, in the following program, the starting position in the
MIDS$ function in line 30 uses the LENgth of S§:

10 INPUT “MONTH/DAY/YEAR"; 8$

30 PRINT“THIS IS DAY “;MID$(S$,LEN(S8$)-4,2);” OF MONTH *;
LEFT$(S$.2)

RUN

MONTH/DAY/YEAR? 12/25/84 .

THIS IS DAY 25 OF MONTH 128

You can also use the string functions to search input for characters that are not
acceptable for your application. For example, suppose an error will occur in your
program if information being input contains numbers. You can use the string
functions to search each piece of input for a number.

10 INPUT "FULL NAME"; 8%

20 FOR I=48 TO 57

30 Y = INSTR(S$,CHR$(I))

40 IF Y>>0 THEN PRINT “ILLEGAL INPUT; CHARACTER";Y;
1§ A NUMBER"

50 NEXT

The INSTR (IN STRing) function finds the starting position of a string
embedded within another string. INSTR searches a text string from left to right
and returns a number that tells you the character position of the first character in
the sought string.

Like the LEN function, INSTR is a numeric function, which means it returns a
number, not a text string. Also like LEN, INSTR works only on a text string
expression, not on a number. '

Converting Strings and Numeric Values: STR$ and VAL

The STR$ function converts numeric values into text strings. You would use this
conversion when you want to use a string function to search the number. There
are no numeric functions comparable to LEFTS$, RIGHTS, MID$, and LEN. So

‘Example:

Redefining the Function Keys 169

when you want to use such a function on a number, first use STR$ to convert the
number to a text string.

T$ = STR$(T): IF RIGHT$(T$,3) The STRS function converts the
="99" THENT=T+ .01 numeric value of T into a string called
T$. The RIGHTS function reads the
three rightmost characters of T$. If
these characters equal .99, .01 is
added to the value of T.

After you convert a number to a text string, the number loses its numeric
properties, which means you cannot use the number in a calculation. Instead, the
computer treats the stringified number the same way it treats any text string.
After you finish using the number as a text string, you can change it back to a
numeric value by using the VAL function.

The VAL function converts numbers in a string into a numeric value. You can
use VAL to reverse a STRS function or to extract numbers from any text-string
expression.

When you use VAL on a text string that contains both numbers and non-
numeric characters, the computer converts only the numbers up to the first
nonnumeric character. For example, if you issue the command PRINT
VAL(”34R5"), the computer displays only 34; the 5 after the R is not dlsplayed
because the first nonnumeric character turns off the VAL function.

Redefining the Function Keys

You can redefine a function key at any time in immediate mode or within a
program. Any definitions you write are erased from computer memory when you
turn off or reset the computer (unless you hold down the RUN/STOP key during
the reset). The KEY command lets you write a definition for a function key. The
KEY command also displays the current definitions of the function keys; all
redefinitions written during the current computing session are displayed in this
list.
Follow these steps to redefine a function key:

STEP 1 Type KEY and the key number (to define the HELP key, type an 8)
followed by a comma.

STEP 2 Type the text string for the key definition:
You can define the key to perform multiple tasks in BASIC. Link multiple
BASIC commands and / or functions with plus signs.
If aliteral constant string is used for a key definition, it must be in quotes.

170 Some Programming Techniques

Use CHRS codes in the definition to use quotation marks or a key such as
a return or the ESCape key.

STEP 3 Verify the new definition by issuing a KEY command, which displays
a list of current key definitions. '

Examples: KEY 1,”INPUT”+CHR$(34) Displays INPUT".

KEY 6,”LIST"+CHR$(13)+"RUN"+CHR$(13) Issues a LIST command
and a RUN command.
RUN executes as soon as
the program is listed.

KEY 3,CHR$(27)+"TLIST”+CHR$(13) Creates a screen window,
whose top left corner is
the current cursor loca-
tion and whose bottom is
the lower right corner of
the screen. After the
window is set, a LIST
command is issued.

Calling a Function Key During Program Execution

The function key definition procedure for defining keys in immediate mode can
also be used in a program. INPUT can be used to accept function key definitions.
Of course, the input must end with a RETURN character from the definition or
the keyboard. GETKEY receives only the first letter of the definition. Also, if
GETKEY is called a second time following the receipt of a multiple character
function key definition, an error results.

To be able to use a function key in a GETKEY command, you must first
redefine the key as a single CHRS code. This definition allows BASIC to consider
the function key to be a single key, not a string of characters. Once the key is
defined as a single key, you can press the key as input for a GETKEY command.
Then you can use an IF command to see if the key pressed equals the CHR$ code
for the function key and use a THEN clause to perform the desired operation(s).
The following example redefines function keys 2 and 3 to change screen colors,
switch to graphic mode 1, and draw a painted shape.

Note that redefinitions written in a program are still in effect when the program
ends. To restore the original definitions, press the reset button.

10 REM DEFINE KEYS 2 AND 3 AS CHR$ CODES 134 AND 135

20 KEY2,CHR$(134): KEY3,CHR$(135)
30 PRINT “PRESS FR TO DRAW THE MOON. PRESS F3 TO DRAW

THE SUN.”

Redefining the Function Keys 171

40 GETKEYZ$: REM PRESS F2 OR F3

50 REM USE ASC TO CHECK THE CHR$ CODE FOR THE PRESSED
KEY ~

60 IFASC(Z$)=134 THEN |
COLORO,1:COLOR1,2:GRAPHIC],1:CIRCLE,160,100,60,50:
PAINT,160,100

- 80 IFASC(Z$)=135 THEN

COLORO,7:COLOR1,8:GRAPHIC1,1:CIRCLE,160,100,60,50:
PAINT,160,100

Changing the Function Key Definitions in Machine Language

Example:

The function key definitions are stored in RAM and can be altered in machine
language. The lengths of each function key definition are stored in $055F-$0566.
The definitions themselves (in CHRS codes) are stored in $0567-$05E6. To
change a definition, not only must the length for the key be changed and its
definition be altered but the data for all of the function keys beyond it must be
moved up or down to meet the new definition. The keys are stored in the
following order:

Key Length Address
Fl $055F

F2 $0560

F3 $0561

F4 $0562

F5 $0563

F6 $0564

F7 $0565

HELP $0566

When a function key is pressed, the SCNKEY routine (called by the system
interrupt service routine) places this information in memory separate from the
normal keyboard queue. The information is processed by keyboard read routines
BASIN ($FFCF) and GETIN ($FFE4).

This example changes the definition of the HELP key to whatever the user

types in. The HELP key is the easiest to change because no other definitions are
affected.

. 2000 A9 0D LDA #$0D Carriage return character.

. 8002 20 DR FF JSR $FFDR2 Send to screen.

. 005 A2 00 LDX #$00 .X points to the definition area.

. 2007 20 CF FF JSR $FFCF Get a character from the keyboard.

173 Some Programming Techniques

. 200A 9D 9F 05 STA $O0B9F,X Store in the HELP key’s definition
area.

. 200D C9 0D CMP #$0D Look for a carriage return.

. 200F FO 07 ‘BEQ $2018 When found, quit. -

. R011 E8 INX Increment the pointer.

. 2012 EO 48 CPX #$48 Compare to the maximum allowed.

. 2014 90 F1 BCC $2007 If not there yet, go on.

. 2016 BO 01 BCS $2019 If there, quit.

. 2018 E8 INX Increment the pointer to get a count.
. 2019 8E 66 05 STX $0566 Store count in HELP key length.
. R01C 00 BRK Stop processing.

Note: There is an “unofficial” ROM subroutine that redefines a function key.
Store the key to redefine (0 to 7) in $76, the address of the new definition is
$22-$23, load .A with the length of the definition and call the subroutine at
$FF49.

Mathematical Calculations

This section briefly discusses a few important concepts for using your computer
for calculating.

Number Storage In BASIC there are two numeric variable types. The more
straightforward is the integer variable (signified by attaching a % to the variable
name). An integer variable can have values from -32767 to +32767. Theoretically,
a value of -32768 is allowed. Try the following example program:

10 N%=3R768
20 PRINT N%

The result will be a -32768. So much for theory.

The second variable type is floating point. The format of floating point number
storage is examined in the section on USR in Chapter 5. The largest magnitude of
a floating point number is 1.70141183E+38, and the smallest magnitude distin-
guishable from zero is 2.93873588E-39. The floating point format allows about
nine decimal digits of accuracy.

Speeding Up Calculations - The first rule to speed calculations is to do as few as
possible. In particular, unless variable space is at a premium, do not calculate the
same quantity twice. Calculate it once, and save the value in a variable. The
exponentiation function (up arrow) is slow, so avoid it if possible. In particular,

Redefining the Function Keys 173

square a number by multiplying it by itself, get a square root by using the SQR
function, and calculate a reciprocal by dividing 1 by the number.

It is somewhat faster to add a number to itself than to multiply by 2. It is
somewhat faster to divide by 2 than to multiply by 0.5. Subtraction and addition
take virtually the same amount of time.

Logarithms and Exponentials LOG(X) returns the logarithm base e (the natu-
ral logarithm) of X. The logarithm with respect to a different base, B, can be
found by dividing LOG(X) by LOG(B). The inverse of the logarithm base e (e
raised to a power) can be calculated with EXP. The inverse of the logarithm base
B can be calculated by using the up arrow to raise B to the power.

Trigonometric Calculations An approximation of pi is available by using the
pi key (the €8 and equal keys pressed together). This is particularly useful when
the values of trigonometric ratios are desired and the angle is measured in
degrees. The SIN, COS, and TAN functions are available, but each requires the
specified angle to be measured in radians. To translate from degrees to radians,
multiply the angle by pi, and divide by 180.

To calculate the values of the remaining trigonometric ratios, recall that

cse(X) = 1/SIN(X)
sec(X) = 1/C08(X)
cot(X) = 1/TAN(X)

The only inverse trigonometric ratio available is the arctangent (ATN). The value
is returned in radians. To change to degrees, multiply by 180, and divide by pi. To
calculate the values of the remaining inverse functions, recall that

arcsin(A) = ATN(A/SQR(1-A*A))
arccos(A) = ATN(SQR(1-A*A)/A)
arccsc(A) = ATN(1/(A*SQR(1-1/(A*A))))
arcsec(A) = ATN(A*SQR(1-1/(A*A)))
arccot(A) = ATN(1/A)

Rounding Off Numbers When asked to display a number, the PRINT (or
PRINT#) command prints nine digits of precision. If this is not desired, the
PRINT USING command may be used. Or, recall that the number X rounded to
N decimal places is given by

INT(101N * X + .5)/10tN

174 Some Programming Techniques

Random Numbers BASIC has a built-in random number function that returns
“afloating point number between 0 and 1. When called with a negative argument,
the RND function reseeds the random number generator with the value specified
and returns the first value from this seed. When called with a zero argument, the
RND function reseeds the random number generator from a hardware clock and
returns the first value from this seed. When called with a positive argument, the
next value in the random sequence is returned. To have a different random
number sequence every time the program is run, call RND at zero first, then at 1
(or any positive number) thereafter. To have the same sequence each time, call
RND at a constant negative seed value first, then at 1 (or any positive number)
thereafter.
When a random floating point number between L and H is needed use

(H-L)*RND(1)+L
When a random integer between L% and H% (inclusive) is needed, use

INT((H%-L%+1)*RND(1)+L%)

Programming Sound and Music

The computer has two voices that can play music and a voice setting that can
create noise. Only two commands, VOL and SOUND, are required to play music
and sound effects.

The VOIL Command

The VOL command sets the volume level for tones played by the SOUND
command. The volume level can be from 0 (off) to 8 (highest volume). You must
be sure that the volume selector on your TV or monitor is turned up. The level of
volume set by the VOL command is relative to other VOL settings. The absolute
sound level is set by the volume selector on your TV or monitor.

The volume level remains at the last level set at the end of a program. If youdo
not turn the volume off at the end of the program or reset its value, the next
SOUND command plays at the volume last set, even if the next SOUND
command is in a different program.

You must execute a VOL command before the SOUND command, or you will
not be able to hear any sound.

The SOUND Command

The SOUND command selects the tone to be played. The SOUND command has
three parameters:

Programming Sound and Music 178

SOUND voice, tone frequency, duration

1. Voice selects the voice in which the tone is to be played. There are two voices
and three voice settings (the second voice has an alternative setting):

Voice setting 1 plays 1024 tones.
Voice setting 2 plays the same 1024 sounds.

Voice setting 3 plays 1024 settings of noise.

You can play sounds from voices 1 and 2 simultaneously. Because voice setting
3is an alternative setting for voice 2, you cannot simultaneously play sounds with
voice settings 2 and 3.

2. Tone frequency selects the frequency of the sound to be played. This setting
can be from 0 to 1023. Table 3-3 lists the numerical values for five octaves of
musical notes. Other values play tones but not musical notes. Noise can be played
in voice setting 3.

Note that, although the tones go from low to high, tone value 1023 is the lowest
note and 1022 is the highest. Tone value 0 is virtually as low as 1023. You
probably cannot hear a tone value between 1016 and 1022.

TABLE 3-3. Numerical Values for Five Octaves of Notes

Octave 1 Octave 2 Octave 3 Octave 4 Octave 5
Note Frequency Frequency Frequency Frequency Frequency
A 7 516 770 897 960
A# 64 544 784 904 964
B 118 571 798 911 967
C 169 596* 810 917 971
C# 217 620 822 923 974
D 262 643 834 929 976
D# 305 664 844 934 979
E 345 685 854 939 982
F 383 704 864 944 984
F# 419 722 873 948 986
G 453 739 881 953 988
G# 485 755 889 957 990

*596 is the setting for middle C.
Note: Use the following formula to calculate a frequency value for some other output frequency
(FO):

frequency = 1024 - INT(111860.781/FO)

The lowest possible frequency is about 109 Hz and the highest is above the audible range (over 20
KHz).

Example:

176 Some Programming Techniques

3. Duration selects how long the note is played. The values in the duration
position can be from 1, which equals 1/60th of a second, to 65535, which is more
than 18 minutes. You can also use decimal numbers, variables, or calculations as
duration values but only their integer part will be used.

Use this formula to figure duration value:

Duration value = time in seconds x 60

When you are programming a song, the durations of all notes are relative to the
whole-note duration you choose. After you select the duration value for the
whole note, other note duration values are determined by fractions of the whole-
note value.

In this program, voices 1 and 2 are used simultaneously to play two-voice
harmony. Although a frequency value of zero does generate a sound, this pro-
gram uses a value of zero to mean a rest (no sound).

10 VOLS

20 DIMN1%(66),N2% (66) ,D1% (66) ,D2% (66)
30 1=0

40 READN1%(I),D1%(I):IFN1% (I)<OTHEN60
50 I=I+1:GOTO40

60 Tl=I:1=0

70 READN2% (I),D2% (I):IFN2%(I)<OTHEN9D
80 I=I+1:GOTO7@

99 11=-1:I12=-1-

100 IFD1>UTHEN130:ELSESOUND1,N1,0
110 I1=I1+1:IFI1<T1THEND1=D1% (I1) :N1=N1%(I1) :ELSE180
120 IFN1>@THENSOUNDL,N1,300

130 IFD2>@THEN160:ELSESOUND2,N2,0

140 12=12+1:D2=D2% (I2) :N2=N2%(I2)

150 IFN2>@THENSOUND2,N2,300

160 Dl=D1-1:D2=D2-1

170 FORI=0TO80 :NEXT:GOTO100

180 VOL®

190 DATA®,1,685,1,779,1,810,1

200 DATA798,1,685,1,798,1,834,1

210 DATA810,2,854,2,755,2,854,2

220 DATA770,1,685,1,770,1,810,1

230 DATA798,1,685,1,798,1,834,1

240 DATA81¢,2,770,2,0,4

250 DATA?,1,854,1,810,1,854,1

260 DATA770,1,810,1,685,1,739,1

270 DATA704,2,779,2,834,2,864,2

280 DATA864,1,834,1,798,1,834,1

290 DATA739,1,798,1,643,1,704,1

390 DATA685,2,739,2,810,2,854,2

310 DATA854,1,810,1,770,1,810,1

320 DATA704,2,834,2,834,1,798,1

330 DATA739,1,798,1,685,2,819,2

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
5490
550

Programming Sound and Music

DATA810,1,770,1,704,1,770,1
DATA643,2,798,2,810,6
DATA-1,-1
DATA7,2,516,4,485,2
DATA516,1,345,1,516,1,596,1
DATA571,1,345,1,571,1,643,1
DATA596,2,516,2,485,2,345,2
DATAS16,1,345,1,516,1,596,1
DATA571,1,345,1,571,1,643,1.
DATA596,2,516,2,596,2,516,2
DATA643,1,516,1,383,1,516,1
DATA262,1,383,1,7,1,169,1
DATAll8,2,262,2,453,2,571,2
DATAS71,1,453,1,345,1,453,1
DATAl69,1,345,1,118,1,118,1
DATA7,2,169,2,262,1,383,1
DATAllS,1,262,1,118,2,118,2
DATAl69,1,345,1,7,1,169,1
DATA7,2,7,2
DATAll8,1,453,1,383,1,453,1
DATA596,6

DATA-1,-1

Line-by-Line Explanation

10
20
30
40
50
60
70
80
90
100
110

120
130
140

150

Set volume to maximum.
Prepare data arrays for notes and durations.

I counts the number of notes.

177

Read a note and duration for voice 1; a negative number means done.

Increment counter and continue.

T1 is the total number of notes for voice 1. Start I over again at 0.

Read a note and duration for voice 2; a negative number means done.

Increment counter and continue.

I1 and 12 are pointers to the data arrays.

If voice 1 is not finished, go on to line 130. Otherwise, stop voice 1.

Increment voice 1 pointer. If done, quit. Otherwise, set up note and

duration.

If not a rest, start the note.

If voice 2 is not finished, go on to line 160. Otherwise, stop voice 2.

Increment voice 2 pointer and set up note and duration.

If not a rest, start the note.

178 Some Programming Techniques

160 Decrement the durations.
170 Wait briefly. Change the value here to make all the notes longer or
shorter.

180 Turn off the volume.
190-350 Data for voice 1.

360 End of data for voice 1.
370-540 Data for voice 2.

550 End of data for voice 2.

Sound in Machine Language

In machine language, sound is generated by accessing the graphics chip (which
also handles sound) directly. The relevant registers are as follows:

Bit(s) Function

SFFOE 0-7 Low byte of frequency for voice 1
SFFOF 0-7 Low byte of frequency for voice 2
$FF10 0-1 High 2 bits of frequency for voice 2
$FF11 0-3 Volume
' 4 Select voice 1 (0 = off, 1 = on)
5 Select voice 2 (0 = off, 1 = on)
6 Select noise for voice 2 (0 = off, 1 = on)
7 Sound switch (0 = on, 1 = off) '
$FF12 0-1 High 2 bits of frequency for voice 1
2-7 Nonsound uses

To generate a sound, first select the voice or voices to-use and the volume level
with register $FF11. Normally, it is appropriate to set bit 7 to 1 at this time, to
keep the sound silent for the moment. Note that voice 1 is on or off, but voice 2
can be on for tone, on for noise, or off. If bit 5 is set to 1, voice 2 generates tones,
regardless of the setting of bit 6. Next, set the frequencies in the appropriate
registers. Be careful when setting the two high bits of voice I to leave the
remaining bits of register $FF12 unchanged. To start the sound, clear bit 7 of
register $FF11. To stop the sound, set bit 7 of register FF11 (or deselect the
voices or set the volume to zero).

Table 3-4 shows the hexadecimal note values.

The following program plays the first few notes of Scott Joplin’s “The Enter-
tainer.” Up to 255 bytes of data are stored at $2100 in the format, high byte of
frequency, low byte of frequency, duration.

Example:

Programming Sound and Music 179

TABLE 3-4. Hexadecimal Musical Notes

Note Octave 1 Octave 2 Octave 3 Octave 4 Octave 5

A 7 204 302 381 3C0

AH 40 220 310 388 3C4

B 76 23B 31E 38F 3C7

C A9 254 32A 395 3CB

C# D9 26C 336 39B 3CE

D 106 283 342 3A1 3D0

D# 131 298 346 3A6 3D3

E 159 2AD 356 3AB 3D6

F 17F 2C0 360 3B0 3D8

F# 1A3 2D2 369 3B4 3DA

G 1C5 2E3 371 3B9 3DC

G# 1ES 2F3 379 3BD 3DE

. 2000 A9 9F LDA #$9F Select voice 1 with maximum volume.

. 2002 8D 11 FF STA $FF1l1 Store in sound selection register.

. 2005 A2 00 LDX #$00 .X points to the data.

. 2007 BD @1 21 LDA $2101,X Get the low byte of the frequency.

. 200A 8D OE FF STA SFFOE Store in low byte of frequency for
voice 1. ,

. 200D AD 12 FF LDA SFF12 Get high byte register.

. 2010 29 FC AND #SFC Mask off low two bits.

. 2012 1D 0@ 21 ORA $2100,X OR in the high bits of frequency for
voice 1.

. 2015 8D 12 FF STA SFF1l2 Store in high byte of frequency for

. voice 1.

. 2018 AD 11 FF LDA S$FF1ll Get sound selection register.

. 201B 29 7F AND #S7F Turn on sound. -

. 201D 8D 11 FF STA SFF1l Store sound selection reglster.

. 20820 BD 02 21 LDA $2102,X Get duration of note.

. 2023 85 D8 STA $D8 Store in temporary variable.

. 2025 A5 A5 LDA $A5 Get low byte of clock.

. 2027 29 92 AND #$02 Look at bit 1.

. 2029 FO FA BEQ $2025 Wait until it is set.

. 202B A5 A5 LDA $A5 Get low byte of clock.

. 202D 29 @2 AND #$02 Look at bit 1.

. 202F D@ FA BNE $202B Wait until it is clear.

. 2031 Cé6 D8 DEC $D8 Decrement duration.

. 2033 DO FO BNE $2025 If not done, wait again.

. 2035 AD 11 FF LDA S$FF1ll Get sound selection register.

. 2038 09 80 ORA #S$80 Turn off sound.

. 203A 8D 11 FF STA SFF1ll Store sound selection register.

. 203D A5 A5 LDA $A5 Get low byte of clock.

. 203F 29 02 AND #5002 Look at bit 1. ,

. 2041 FO FA BEQ $203D Wait until it is set.

. 2043 E8 INX Increment .X by three to point at

. 2044 E8 INX next note.

180 Some Programming Techniques

. 2045 E8 INX

. 2046 E@ 33 CPX #$33 Compare to position following last datum.
. 2048 90 BD BOC $2007 If not done, continue.

. 204A 00 BRK Stop processing.

"Here is some example data:

>2100 03 42 02 03 4C 02 03 56
>2108 02 03 95 04 03 56 02 03
>2110 95 04 03 856 04 03 95 0OC
>2118 03 Al 02 03 A6 02 03 AB
>2120 02 03 95 02 03 Al 04 03
>2128 AB 02 03 956 02 03 Al 04
>2130 03 95 OC 00 00 00 OO0 00

Using Arrays to Handle Groups of Data

An array, which is also called a matrix, is a set of related values. A two-
dimensional array is organized into numbered “rows” and “columns.” The name
of the array and the number of elements the array can contain are established in
an array-DIMensioning command. After an array is defined in a DIM command,
you can use values in the array asindividual dataitems. You refer to any element
of a two-dimensional array by giving the array variable name and the row and
column number in the array where the element is located. This row-and-column
address is called a subscript of the array.

An array can have one, two, or more dimensions. A one-dimensional array has
only a row of data. A two-dimensional array has rows and columns of data.
Arrays with more than two dimensions have more complex data configurations.
You need not be able to visualize multidimensional arrays to work with them
effectively.

You should always DIMension an array before you use it. If you use an array
element without first DIMensioning the array, the computer gives the array the
default number of elements (11). You cannot change the dimensions of an array
after you have DIMensioned it or after you have accepted the default dimensions.
If you DIM the array after you have used it, or try to reDIM the array, the
program aborts and the error message REDIM’D ARRAY is displayed.

The array name is a variable that follows standard variable rules. Arrays
containing text elements must have text-string variable names. Arrays containing
numeric elements must have a numeric variable name.

The subscripts set the number of rows and columns in a two-dimensional
array. Rows are listed first. If you are using a one-dimensional array, there is no
column number.

Using Arrays to Handle Groups of Data 181

The first element in an array is numbered 0, not 1. This means that an array
dimensioned as (5,3) actually has 6 rows and 4 columns, or 24 elements. When
you figure the number of elements in an array, add 1 to each dimension, then
multiply the results of the additions. For example, if the array is dimensioned
DIM K(2,4), the array contains (2 + 1) * (4 + 1) = 15 elements.

The following example uses a two-dimensional array to input and print data.
The printed data in line 80 shows how array elements are assigned in a two-
dimensional array.

10 DIMA(2,3)

20 FORY=0TO2

30 FORX=0TO3

40 INPUT"NEXT ELEMENT";A(Y X)

50 NEXTX,Y

60 FORY=0TO2

70 FORX=0TO3

80 PRINT”ROW”;Y;"COLUMN";X;"EQUALS";A(Y,X)
90 NEXT X,Y

The following example uses a one-dimensional array and a two-dimensional
array to keep track of data. The program creates a 4-by-4 letter grid like the one
used in the game Boggle. Array B contains numbers for the current 16 letters to be
used in the grid. Array N§$ contains the 50 letters that can become part of the grid.

10 DIMB(3,3):DIMN$(49)

15 DATA AB.C,D,EFGH,IJKLMN,0PQR,STUV,WXYZ
20 DATA A.E,1,0,U,AEIU0,AEIOR,STNM,R,STNM

25 REM ASSIGN NUMBERS TO LETTERS

30 FOR Y=0T049

40 READ N$(Y)

50 NEXTY

52 X = RND(0):REM SEED RANDOM NUMBER GENERATOR
53 PRINT

55 REM RANDOMLY ASSIGN NUMBERS TO SQUARES

60 FOR X=0TO03

70 FOR W=0TO3

80 B(X,W)=INT(RND(1)*50)

100 PRINTN$(B(X,W));

110 NEXTW:PRINT:NEXT X

The FOR . . . NEXT loop in lines 30-50 assigns a letter value to the elements
of array N§ so that array element N$(0) equals A, N$(1) equals B, and so on. We
use 50 elements instead of just 26, so we can assign common letters to more than

182 Some Programming Techniques

one number, which increases the chances that the common letters are chosen as 1
of the 16 letters in the grid.

Lines 60-110 randomly generate 16 numbers between 0 and 49. In line 100 the
chosen element of array N$ is printed. The nested loops are used to force the
computer to print four letters next to each other on a single row. The PRINT in
line 110 forces the computer to print the next four letters on a new line.

The next example uses two one-dimensional arrays to sort a list of names into
alphabetical order. Array N§ contains the names that are to be sorted. Array K is
the key file that contains the numbers used to produce and print a sorted list of
names. This sorting technique, which is called a bubble sort, uses the key file to
expedite the sorting procedure. The key file is sorted as the names are compared;
the name file itself is not actually sorted. As soon as the loop in lines 180-260
determines which of the two current names is first, the next name is retrieved from
the N§ array. Elements of array K are sorted in line 240 when name N$(K(Y)) is
greater than the next name, N$(K(Y+1)).

Line 300 prints the unsorted array N$ and the sorted names, which are accessed
in the sorted order by using the sorted key file, array K.

5 DATA JOE,JAY,ANNE,JIM,DAN ,CATHERINE, SARAH ,GLENN,GERRY , TERRY ,BRUCE , JOHN

1¢ DATA BOB,LIB,OLIVER,STELLA,MARCIA,DAVE,MARY LOU,CATHY,JACK,END
15 REM COUNT HOW MANY NAMES ARE TO BE SORTED
2@ READNS:IFNS="END"THEN 60
40 N=N+1
50 GOTO 20
60 RESTORE
79 REM DIMENSION ARRAYS WITH THE NUMBER OF NAMES TO BE SORTED
71 REM NS HOLDS NAMES; K IS A KEY FILE THAT ASSOCIATES A NUMBER WITH A
NAME
80 DIMNS (N),K(N)
990 REM READ NAMES FROM THE DATA LIST
100 FORX=1TON
120 READNS (X)
130 REM ASSIGN ARRAY N$ ELEMENT NUMBER TO KEY FILE
140 K(X)=X
160 NEXTX :
180 FORX=NTO1lSTEP-1
200 FORY=1TOX-1
210 REM SEE WHICH OF TWO NAMES COMES FIRST ALPHABETICALLY
220 IFNS(K(Y))<=NS$(K(Y+1l))THEN 260:REM THEN GO GET NEXT NAME
230 REM IF THE 1ST NAME IS > THE 2ND, ELEMENTS IN KEY FILE ARE REVERSED
235 REM THIS IS KEY TO SORT: ONLY KEY FILE IS SORTED;
ITS SORT IS BASED ON VALUES TAKEN FROM ARRAY NS
240 T=K(Y) :K(Y)=K(Y+1l) :K(Y+1)=T
260 NEXTY,X
270 REM PRINT UNSORTED AND SORTED LISTS
280 PRINTCHRS (18) "UNSORTED", TAB (10) " SORTED"
290 REM NS (X) PRINTS UNSORTED NAMES; KEY FILE IS USED TO PRINT SOR‘I‘ED
NAMES
300 FORX=1TON:PRINTNS (X) ,TAB(10) NS (K (X)) :NEXT

UnNEWing Programs 183

UnNEWing Programs

Example:

If youissue a NEW command and immediately regret it, you can try to restore the
program. If you or one of your programs executed a GRAPHIC command
during the current session and no GRAPHICCLR command has been executed
since, use $4000 instead of $1000 in the following steps:

1.
2.
3.

5.

Enter the monitor by issuing the MONITOR command.
Examine memory starting at $1000 by typing M 1000.

Scan along the resulting memory dump to find the end of your first program
line. If you are lucky, you can recognize it from the text you used. If not, check
the token list in Appendix B. The end of the line is marked with a zero byte (but
this may not be the first zero byte you encounter). Note the address of the
location following the zero byte (the first location of the next line). Cursor to
the location $1001 in the dump and enter the low byte of the address there, and
the high byte in $1002 (and press RETURN).

. Continue looking at the memory dump (issue additional M commands if

needed) until you find the end of your program. It is marked by three zero
bytes. Note the address of the location following the three zero bytes (the first
unused location). Display locations $2D and $2E by typing M 2D 2D. Enter
the low byte of the address in location $2D and the high byte in $2E (and press
RETURN).

Exit the monitor by typing X. Your program should be back.

Suppose you had typed in the following program (and not yet saved it to tape or
disk).

10 PRINT”I AM A LITTLE KITTY"
20 PRINT"MY NAME IS NICKY”
30 DO WHILE A$=""

40 PRINT"MEOW”

50 GETA$

60 LOOP

Then you typed:

NEW

Here is what would happen when you unNEWed the program:

MONITOR

MONITOR

184 Some Programming Technigues

PC SR AC XR YR SP

. 0000 00 00 00 0O F8

M 1000

>1000 00 00 00 OA 00 99 22 49 :l[.."T
>1008 20 41 4D 20 41 20 4C 49 :[AM A L]
>1010 B4 B4 4C 45 20 4B 49 54 :[[TLE KIT|
>1018 54 B9 22 00 34 10 14 00 :MY"4..]
>1020 99 22 4D 59 20 4E 41 4D :["MY NAM]

>1028 45 20 49 53 20 4E 49 43 : i
>1030 4B 59 22 00 42 10 1E 00 :KY"Db..]

>1038 EB 20 FD 20 41 24 B2 22 :L__A$:2”
>1040 22 00 4E 10 28 00 99 22 :[.n.(.”]
>1048 4D 45 4F 57 22 00 56 10 : MEOW”.v.|
>1050 32 00 Al 41 24 00 5C 10 :R.IA$.]
>1058 3C 00 EC 00 00 00 00 00 :K...]

Note that the first line ends at $101 A and that the location following the zero is
$101C. So cursor up to the first line of the memory dump and change $1001 and
$1002. Now the first line of the dump is:

Note that the last line ends at $105A (the token for LOOP is $EC) and that the
location following the three zeroes is $105E.

M 2D 2D
>002D 03 10 03 10 03 10 00 FD :[ew.

Change $2D and $2E so that the dump is

>002D BE 10 03 10 03 10 00 FD
X

READY.

LIST

10 PRINT”I AM A LITTLE KITTY"

20 PRINT”MY NAME IS NICKY"”

30 DO WHILE A$=""

40 PRINT”MEOW”

50 GETA$

60 LOOP

READY.

Your program is restored.

Using the Built-In Error-Trapping Routine 188

Using the Built-In Error-Trapping Routine

Example:

The TRAP command lets you prevent a program from being aborted because of
any BASIC error condition except an UNDEFINED STATEMENT error.
TRAP catches the error and branches to the line number named as the TRAP
parameter. At this line number, you can write any sort of error-handling and/or
error-reporting routine. You should use RESUME to resume execution after
completing your error routine. Using a GOTO to leave a trap routine causes
BASIC to think it is still in the TRAP routine (unless it receives another TRAP .
command). Because errors inside TRAP routines cannot be trapped, it is best
never to leave a trap routine through a GOTO. RESUME reexecutes the line in
which the error occurred. RESUME NEXT resumes executing at the statement
following the error. RESUME linenumber resumes execution at the specified line
number. Error trapping can be turned off by using a TRAP command with no
line number. Error trapping is also turned off by a CLR command.

TRAP does not trap disk drive errors (read from the disk error channel) or

other errors not generated by BASIC. For a list of all the BASIC errors. See
Appendix A.
In this program, a DIVISION BY ZERO error can occur if 0 is input as a value
for X. The error is trapped, and the line number (EL), error number (ER), and
error message (ERR$(ER)) are printed before execution resumes with the
INPUT statement. The program prints out 10 valid results. An input resulting in
an error is not counted because execution resumes at 30.

10 TRAP60O

20 FORI=1TO 10

30 INPUT Y, X

40 PRINT Y/X

50 NEXT:END

60 PRINT "LINE”;EL;"ERROR”;ER;ERR$(ER)
70 PRINT X:RESUME 30

Line-by-Line Explanation

10 Turn on error trapping with trap routine starting at line 60.
20 Count 10 valid results.

30 Get values for X and Y.

40 Print Y divided by X.

50 Go on to next result, and quit when done.

60 Print out line number, error number, and error message,

70 Print out the value of X and resume program execution at 30.

4 Programming Graphics

The graphics statements built into BASIC on the Plus/4 make graphics treatment
in BASIC almost entirely different from that of machine language. No detailed
knowledge of the graphics chip itself is required to do sophisticated high-
resolution and multicolor graphics on the Plus/4. But, of course, most machine
language programmers will need to control the chip’s functions directly. This
chapter is therefore divided into two sections: the first primarily for the BASIC
programmer and the second primarily for the machine language programmer.

Graphics Programming in BASIC

All the BASIC statements used in this chapter are detailed in Chapter 1. When
you need additional information on the use and parameters of a BASIC state-
ment, refer to that chapter.

Color and Luminance

Your Commodore Plus/4 is capable of producing 16 different colors. Each of
these colors may be modified into eight shades (the eight shades of black are
indistinguishable). This means that the Plus/4 can produce 121 different colors.
In BASIC there are five sources for the colors on the screen. The color for each of
these sources is chosen with the COLOR statement.

COLOR source,color,Juminance
Depending on which graphic mode the Plus/4 is in, different color sources are

available for text and graphics. The uses of color in each mode are explained in
this chapter. The value for color chooses the color:

186

Graphics Programming in BASIC 187

Value Color Value Color

1 black 9 orange

2 white 10 brown

3 red 11 yellow-green
4 cyan 12 pink

5 purple 13 blue-green

6 green 14 - light blue

7 blue 15 dark blue

8 yellow 16 light green

The value of luminance is optional and can be 0 (dark) through 7 (light). The
COLOR statement uses a luminance of 7 if you do not specify a value.

The following example program displays all of the colors of your Plus /4 onthe
screen.

Color and Luminance Example Program

10 COLORO,2,6

20 GRAPHIC1,1

30 X=0

40 FORC=1TO16

50 Y=0

60 FORL=0TO%Y

70 COLOR1,C,L

80 BOX1,X,Y,X+16,Y+16,,1
90 Y=Y+16

100 NEXTL

110 X=X+20

120 NEXTC

130 COLOR1,1,0:CHARI1,16,20,”"HIT KEY"”
" 140 GETKEYK$:GRAPHICO

Line-by-Line Explanation

10 First change the background color to a light gray.
20 Put the Plus/4 into high-resolution graphics mode.
30 Start the x-coordinate of the display at zero.

40 Go through the 16 available colors.

188 Programming Graphics

50 Start the y-coordinate of each column at zero.
60 Go through the eight available shades for each color.
70 Set the foreground color to the current color and shade.
80 Draw a box with the foreground color and fill it with color.
. 90 Adjust the y-coordinate for the next box.
100 Use the next luminance value.
110 Adjust the x-coordinate for the next column.
120 Use the next color value.
130 Change the foreground color to black and write "HIT KEY” on the screen.

140 Wait for a keypress and return to text mode.

Text Mode

The normal mode of the Plus/4’s operation is text mode. In text mode, you can
PRINT alphanumeric and graphic characters onto the Plus/4 screen. When you
need to return to text mode after using another graphic mode, use

GRAPHIC O,clear flag
The O tells the Plus/4 to return to text mode. The clear flag is an optional
parameter. If it is 1, the text screen is automatically cleared. If it is not present or is
0, any text previously placed on the text screen remains there. Youcan also return
to text mode by using the GRAPHICCLR command. This command also frees
the 12K reserved for the graphics screen for use by your program.

In text mode there are three possible color sources. The background and
border of the screen are colored with
COLOR O,color,Juminance
for the background, and
COLOR 4,color,luminance

for the border. The color of the characters themselves can be controlled with

COLOR 1,color,luminance

Graphics Programming in BASIC 189

Characters can be placed on the screen with the PRINT (and PRINT USING)
and CHAR statements. Each character has its own foreground color. That means
you can PRINT every character in a different color. Using the COLOR statement
to change colors that often is cumbersome, so BASIC has color control charac-
ters you can include in a text string to change the color. There are only 16 of these
control characters, so you can choose only 16 colors by this method. Their default
values are shown in Table 4-1. The color and luminance assigned to each color
key are normally determined by the contents of 275-290 ($01 13-$0122). These
locations can be altered, thereby altering the meanings of the color keys. Also, the
Plus/4 can be instructed to get the values of the color keysfrom ROM by setting
the high bit of 2041 ($07F9) to 1, in which case Table 4-1 applies.

If you press the color keys in quote mode (see Chapter 3), a graphics character
isincluded in the string you create. The color changes when the string is printed. If
you press the keys at any other time, the color of the characters you type from
then on is changed. If you include the CHRS code of the color in a string you
print, the color changes when the string is printed.

Other control characters can be included in text strings.

TABLE 4-1. Color Keys

CHRS Keys Color Luminance
144 Control 1 1 0 Black

5 Control 2 2 7 White

28 Control 3 3 3 ‘Red
159 Control 4 4 6 Cyan
156 Control 5 5 4 Purple

30 Control 6 6 3 Dark green
31 Control 7 7 4 Blue
158 Control 8 8 7 Yellow
129 1 9 4 Orange
149 & 2 10 2 Dark brown
150 3 11 5 Yellow-green
151 4 12 6 Pink
152 5 13 5 Blue-green
153 6 14 6 Light blue
154 7 15 2 Dark blue
155 8 16 5 Light green

190 Programming Graphics

CHRS$ Keys Function
18 CONTROL 9 Turns on reverse printing.
146 CONTROLO Turns off reverse printing.
130 CONTROL, Turns on flashing.
132 CONTROL . Turns off flashing.
8 CONTROL H Disables @ SHIFT.
9 CONTROLI Enables @ SHIFT.
14 CONTROL N Switches (whole screen) to upper/lower case.
142 Reverse SHIFT N Switches (whole screen) to upper case/ graphics.
17 Cursor Down Moves down one line.
145 Cursor Up , Moves up one line.
29 Cursor Right Moves one space to the right.
157 Cursor Left - Moves one space to the left.
19 HOME Moves to top left of screen.
147 SHIFT HOME Clears screen and moves to top left of screen.

Again, if you press the designated keys in the quote mode, these functions
occur when the string is printed. The reverse SHIFT N cannot be entered directly
into a string. You must type in the string leaving blanks where itis to go. Then,
when you are out of the quote mode, cursor back to those blanks, get into reverse
printing (Control 9) and type in the SHIFT N. You can also include the CHRS
code to perform the function when the string is printed.

The PRINT (or PRINT USING) statement may be used to place text on the
screen wherever the cursor is. When PRINT or PRINT USING is used, you can
control the position on the screen by placing the cursor where you want the text to
be. Generally, you must start by printing a CLEAR/HOME character
(CHR$(147)), so that the cursor always begins in the upper left corner of the
screen, and then using cursor control characters to reach the desired position.

The CHAR statement may also be used to place text on the screen. You may
still want to clear the screen using CLEAR/HOME, but you do not need to be
concerned with cursor positioning. The CHAR statement requires designating an
x-coordinate and y-coordinate for the placement of the text. The following
example program illustrates the use of some of these capabilities.

Text Mode Example Program

10 COLORO,5,5:COLOR4,5,4:COLOR1,7,3

20 PRINT”E2(QQQQQQQQ “

30 PRINTSPC(14)"INTRODUCING”

40 PRINTSPC(14)"YOUR “CHR$(130)"NEW”
50 COLOR1,16,1

Graphics Programming in BASIC

60 PRINTSPC(14)”"COMMODORE”

70 PRINTSPC(14)"COMPUTER"

80 CHAR,12,7,” AN[R] d

90 FORY=8T013

100 CHAR,12,Y,” 1111111111117 *

110 NEXT

120 CHAR,12,14,” "

130 PRINT” [QQQ]”

140 PRINTCHR$(144)SPC(15)"HIT KEY”
150 GETKEYK$:COLORO,,7:COLOR4,15,6

Notes

191

20 Inquotesisareversed heart followed by eight reversed upper-case Q’s. These
are printed with the SHIFT CLEAR/HOME and cursor-down keys,

respectively.

80 Inquotesisareversed upper-right-corner graphic (CHR$(127)) followed by
areversed upper-case R and 15 spaces. These are obtained with CONTROL

CYAN, CONTROL REVERSE ON, and the space bar, respectively.

100 In quotes is a space followed by 13 reversed right square brackets, and one
more space. The reversed right square bracket is printed with the cursor-

right key.

130 In quotes are three reversed upper case Q’s, which are printed with the

cursor-down key.

Line-by-Line Explanation

10 Change the background color to light purple, the border to darker purple,

and the character color to blue.
20 Clear the screen and cursor down near the middle.
30 Space over and print INTRODUCING.

40 On the next line space over and print YOUR and a flashing NEW.

50 Change the character color to green.
60 Space over and print COMMODORE.
70 On the next line space over and print COMPUTER.

80 Ontheeighth linein the thirteenth column, print a color change to cyan, and

15 reversed spaces.

90 Do the next statement for lines 9 through 14.

193 Programming Graphics

100 In the thirteenth column, print a reversed space, 13 cursor rights, and
another reversed space.

110 Do next line.

120 On the fifteenth line in the thirteenth column print 15 reversed spaces.
130 Print three cursor down commands.

140 Print a color change to black, space over, and print HIT KEY.

150 Wait for a key. Then change background and border colors to normal
values.

High-Resolution Mode

The graphics mode that provides maximum resolution on the Plus/4 is accessed
with the command:

GRAPHIC 1,clear flag

The clear flag is optional (1 clears the high-resolution screen, 0 or absence leaves
the screen intact).

This statement creates a bit-mapped screen on which the programmer can use
the Plus/4’ graphics statements: BOX, CIRCLE, DRAW, and PAINT. A
section of memory (12K bytes) is set aside for this use and is therefore not
available for the BASIC program. The text screen area of memory is left intact.
Therefore, you can PRINT on the text screen behind the graphics screen, and the
PRINTed data are revealed when you return to text mode.

The Split-Screen You can create the bit map and view the upper portion of it
and the lower five lines of the text screen simultaneously with the command:

GRAPHIC 2,clear flag

Again, both the text and the bit-map areas of memory are reserved. The use of
this statement merely reveals the lower five lines of the text screen and conceals
the corresponding portion of the bit map. When the clear flagis set to 1, both the
graphics and text screens are cleared and the text cursor is placed at the left of the
first visible text line.

The Coordinate System The high-resolution screen is normally addressed with
a 320 by 200 coordinate matrix. The horizontal (or x) coordinate ranges from 0 at

Graphics Programming in BASIC 193

the left of the screen to 319 at the right. The vertical (or y) coordinate ranges from
0 at the top of the screen to 199 at the bottom. Only the CHAR statement (which
plots characters on the high-resolution screen) uses the text rows and columns for
its coordinates. The CHAR x and y are related to the high-resolution x and y by

CHAR coordinate = INT(high-resolution coordinate/8)

Colorsin High Resolution The background and border colors of the screen can
be changed as usual with the commands:

COLOR O,color,Jluminance
and
COLOR 4,color,Juminance

The other color available in high resolution is foreground. The foreground color
is set with

- COLOR 1,color,Juminance

In each of the drawing statements, you can specify the use of foreground or
background color.

Although you can choose to set (to foreground color) or clear (to background ‘
color) each pixel on the screen in this mode, the colors of some pixels are not
independent. The background color is globally defined. Whenever you change
COLOR 0, every background colored pixel changes color. Also, each 8-pixel-by-
8-pixel character cell on the screen is assigned a single foreground color. This
means that every pixel set to foreground color within a character cell is the same
color. If you change foreground colors between two drawings to the same
character cell, the color of pixels drawn both times will be the color used last.
However, each of the 1000 character cells has an independent color (and lumi-
nance), allowing for a great deal of creative color usage, even in high-resolution
mode.

Whenever you draw a pixel, whether in foreground or background color, the
foreground color for its character cell is set to the current foreground color. This
is normally the desired effect when you are drawing in foreground color. But
when drawing in background color, one would expect the foreground colors to be
unaffected. Unfortunately, this is not the case. If you have drawn in foreground
color in a character cell, and you return to draw in background color, the
foreground color of that cell is updated to your current foreground color. If you

194 Programming Graphics

have changed the foreground color since drawing in that cell, the foreground
colored pixels will change color, even though you are drawing in background
color.

High-Resolution Colors Example Program

This example program illustrates the color limitations of high-resolution
graphics mode. Note that the coordinates of the boxes in the first series are
incremented by 10. The character boundaries are therefore frequently crossed
and a “bleeding” of colors is observed. The coordinates of the boxes in the second
series are incremented by eight (and start on a character boundary). Therefore, no
character boundaries are crossed and the colors remain true.

10 GRAPHIC1,1

20 FORX=0TO190STEP10

30 COLORL,((X/10)AND15)+1,8
40 BOX XX, X+16,X+10,,1

50 NEXT

60 FORX=0TO192STEP8

70 COLORL,((X/8)AND15)+1,5
80 BOX,X+64,X X+80,X+8,1

90 NEXT

100 COLOR1,1,0:CHAR,5,20,”HIT KEY"
110 GETKEYK$:GRAPHICO

Line-by-Line Explanation

10 Enter high-resolution graphics mode (and clear graphics screen).
20 First series of box coordinates are incremented by 10.

30 Choose a new foreground color for each box.

40 Draw a box 16 by 10 at the current coordinates with foreground color
and fill it in.

50 Get the next set of coordinates.
60 Second series of box coordinates are incremented by 8.
70 Choose a new foreground color for each box.

80 Draw a box 16 by 8 at the current coordinates with foreground color and
fill it in.

90 Get the next set of coordinates.
100 Change foreground color to black and plot "HIT KEY”.

110 Wait for a key, then return to text mode.

Graphics Programming in BASIC 198

Multicolor Graphic Mode

Multicolor graphic mode is normally used when the color restrictions of high
resolution are unacceptable. It is accessed with

GRAPHIC 3,clear flag

The clear flag is optional (1 clears the multicolor graphic screen, 0 or absence
leaves the screen intact).

This statement creates a multicolor bit-mapped screen on which the pro-
grammer can draw graphics with the Plus/4’s graphics statements: BOX, CIR-
CLE, DRAW, and PAINT. A section of memory (12K bytes) is set aside for this
use and is therefore not available for the BASIC program. The text screen area of
memory is left intact. Therefore, you can PRINT on the text screen behind the
graphics screen, and the PRINTed data are revealed when you return to text
mode.

The Split-Screen You can create the multicolor bit map and view the upper
portion of it and the lower five lines of the text screen simultaneously with the
command:

GRAPHIC 4,clear flag

Again, both the text and the multicolor bit map areas of memory are reserved.
The use of this statement merely reveals the lower five lines of the text screen and
conceals the corresponding portion of the multicolor bit map. When the clear flag
is set to 1, both the graphics and text screen are cleared and the text cursor is
placed at the left of the first visible text line.

The Coordinate System The multicolor graphic screen is normally addressed
by a 160 by 200 coordinate matrix. The horizontal (or x) coordinate ranges from 0
at the left of the screen to 159 at the right. The vertical (or y) coordinate ranges
from 0 at the top of the screen to 199 at the bottom. The x coordinates used on the
multicolor graphic screen are exactly one-half of the corresponding x coordinates
on the high-resolution screen. Only the CHAR statement (which plots characters
on the multicolor graphic screen) uses the text rows and columns for its coordi-
nates. The CHAR x and y are related to the multicolor graphic x and y by

CHAR y-coordinate = INT(multicolor graphic y-coordinate/8)
and

CHAR x-coordinate = INT(multicolor graphic x-coordinate/4)

196 Programming Graphics

By the way, characters plotted with CHAR in multicolor mode do not appear the
same as in text mode or high resolution because pairs of bits (not single bits) in the
character pattern determine the color.

Colors in Multicolor Graphic Mode The background and border colors of the
screen can be changed as usual with the commands

COLOR O,color,luminance
and
COLOR 4,color,luminance

Three other colors are available in multicolor mode. They are all nonbackground
colors. The foreground color is set with

COLOR 1,color,Juminance
Multicolor 1 is set with
COLOR 2,color,luminance
Multicolor 2 is set with
COLOR 3,color,luminance

With each of the drawing statements, you can specify which color source to use.

Color management in multicolor graphics is somewhat involved. First, the
background and multicolor 2 are global colors. That is, whenever you change
COLOR 0, everything drawn in background color changes color. Similarly,
whenever you change COLOR 3, everything drawn in multicolor 2 changes color.
Second, each 8-pixel-by-8-pixel (or 4 by 8, using multicolor coordinates) charac-
ter cell has its own set of colors and luminances for foreground color and
multicolor 1. This means that all the pixels within a character cell drawn in
foreground color are the same color. Also, all the pixels within a character cell
drawn in multicolor 1 are the same color. But the two colors can be different and
background and multicolor 2 can be used at the same time, allowing up to four
colors within a character cell. And each of the 1000 character cells has its own
independent pair of foreground color and multicolor 1.

Whenever you draw, the-foreground color and multicolor 1 for the character
cell you are drawing in are updated to their current values. This means that if you
have changed either of these colors since drawing with them in this character cell,
the pixels you drew before will change color even if you are not now drawing with
their color source.

Graphics Programming in BASIC 197

Multicolor Example Program

This program draws three sets of circles, one in each of the three nonbackground
colors. The program demonstrates that these three colors are independent, but
drawing over a color replaces it. At the end, the foreground color is changed to
black to plot the characters in "HIT KEY”. After the user hits a key, a line is
drawn in background color through the circles. Even though the line is drawn in
background color, the foreground color of the character cells through which it
passes is changed to black, spoiling the circles drawn in foreground colors.

10 GRAPHICS3,1

20 COLOR1,2,6:COLORR,5,5,:COLOR3,13,4
30 FORC=3TO1STEP-1

40 FORA=-0TO180STEP10

50 CIRCLEC,40+C*20,100,10,50,,,A,20
60 NEXTA,C

70 COLOR1,1,0:CHAR1,5,20,"HIT KEY”
80 GETKEYK$:DRAWO0,0,100T0159,100
90 GETKEYK$:GRAPHICO

Line-by-Line Explanation

10 Get into multicolor graphic mode.

20 Set up the foreground color, multicolor 1, and multicolor 2.

30 Draw in each of the three nonbackground colors.l

40 Draw ovals at a series of angles.

50 Draw an oval.

60 Do the next angle and the next color.

70 Change the foreground color to black.

80 Wait for a key press. Then, draw a line in background color through the ovals.

90 Wait for a key press. Then, return to text mode.

The Pixel Cursor and Relative Coordinates

Each of the BASIC drawing statements needs at least one set of coordinates. If
you review those statements (BOX, CIRCLE, DRAW, PAINT, SSHAPE, and
GSHAPE)in the BASIC language section, you will notice that in many cases the
coordinates have a default value of the location of the pixel cursor. The pixel
cursor is an invisible set of coordinates that BASIC keeps track of at all times.

198 ‘Programming Graphics

You can change the pixel cursor location with the LOCATE statement, and
BASIC may change the pixel cursor location when a drawing is done.

When you want to use the default value of the pixel cursor’s coordinates in a
drawing statement, but need to specify one of the later parameters, only one
empty position must be left (NOT one for x and one for y). For example, the BOX
statement:

BOX color,x1,y1,x8,y8,angle,paint flag

defaults the'second set of coordinates to the pixel cursor. If you want to do this,
-but also want your box painted, the following can be used:

BOX 1,10,10,/45,1

This statement draws a filled-in box in foreground color between the absolute
coordinates (10,10) and the pixel cursor at an angle of 45 degrees.

The pixel cursor may be used as a reference for relative coordinates. That is,
you can specify coordinates relative to the pixel cursor’s current coordinates. This
is useful when you want to be able to execute the same series of drawing steps at
various different locations on the screen.

Two types of relative coordinates are available. The first is rectangular relative
coordinates. Instead of specifying an absolute x and y coordinate, you specify
changes in x and y from the pixel cursor’s current location. This is signaled by the
use of a plus (+) sign for a positive change or a minus (-) sign for a negative
change. For example, the statement

CIRCLE 1,+10,-30,0

draws a circle of radius 20 with its center 10 pixels to the right and 30 pixels above
the pixel cursor’s location.

The second type of relative coordinate is polar. Instead of specifying an
absolute x and y coordinate, you specify a distance and an angle from the pixel
cursor’s current location. The distance is specified first, then separated from the
angle (in degrees) by a semicolon. For example, the statement

CIRCLE 1,15;45,25

draws a circle of radius 25 with its center 15 pixels from the pixel cursor’s location
at an angle of 45 degrees.

Relative Coordinates Example Program

10 GRAPHIC1,1
20 READX,Y,C,L:IFX<OTHEN40

Graphics Programming in BASIC 199

30 GOSUB140:GOTOR0

40 COLOR1,1,0:CHAR,5,19,HIT KEY”
50 GETKEYK$:GRAPHICO:END
60 DATA100,100,4,5

70 DATAS50,60,3,4

80 DATA10,20,5,6

90 DATA120,40,6,5

100 DATA140,70,7,5

110 DATAR00,110,8,6

120 DATAR40,50,9,6

130 DATA-1,-1,1,-1

140 COLOR1,C,L

150 LOCATEX,Y

160 FORA=0TO180STEP45

170 BOX,+30,+6,,A

180 NEXT

190 PAINT,15;100

200 RETURN

Line-by-Line Explanation
10 Enter high-resolution mode and clear screen.

20 Read a set of coordinates, color, and luminance for a flower. If the
last flower is done, go to 40.

30 Call flower-drawing subroutine at 140 and return to 20 for next
flower.

40 Change the foreground color to black and plot "HIT KEY”.

50 Wait for a key. Then return to text mode and stop the program.

60-130 Data for the flowers.

140 Change the foreground color for this flower.

150 Locate the pixel cursor at the x and y for this flower.

160 Draw boxes at angles from 0 to 180 degrees.

170 Draw a box with a corner 30 pixels below and 6 pixels to the right of
the pixel cursor location and the other corner at the pixel cursor.

180 Do the next angle.
190 Fill in the area in the middle of the flower.

200 Return from subroutine.

200 Programming Graphics

Custom Character Sets

© %8 e ¥

N

B
.“v“

e -

Y

rl

-

The characters you see on your computer monitor or TV are formed by a pattern
of dots. Each character occupies a cell eight dots (pixels) wide and eight dots high.
Each dot is either on or off. Because each dot is individually controlled, the
graphics chip is said to be in high-resolution mode. The pattern of dots that are on
form the character you see. The patterns for the built-in characters are stored in
your computer on a permanent memory chip (the character ROM).

Each dot in the character’s pattern is represented by one bit in the character
ROM. Since there are 8 bits in one byte (or memory location), it takes 8 bytes to
specify each character’s pattern. Following is a diagram illustrating the character
C’s 8 x 8 cell.

BIT VALUES
128 64 32 16 8 4 2 1
X X X X byte 0
X X X X byte 1
X X N byte 2
X X . byte 3
X X \ “ byte 4
X X : X X byte 5
X X X X byte 6
byte 7

The character C is represented by 8 bytes of data calculated by adding up the bit
values of the bits it has on. For example, byte 0 is 32+ 16 + 8 + 4 = 60 (§3C).
There are two sets of built-in characters. The first is upper case/graphics and

" the second is upper/lower case. You can switch between the two by pressing the

SHIFT and @ keys simultaneously.

When the built-in characters are not sufficient, you can set up a custom
character set. That is, the graphics chip can be instructed to get its character
patterns not from the character ROM, but from an area of user memory (RAM).
A character set consists of 128 characters (8 bytes each) and resides in 1K (1024
bytes) of memory. (See the machine language section of this chapter for informa-
tion on expanding the character set to 256 characters.)

Two locations control where the character patterns come from: 65298 ($FF12),
which controls whether the patterns come from ROM or RAM, and 65299
($FF13), which controls what locations in memory the patterns come from.
When you switch between upper case/ graphics and upper/lower case with the
SHIFT and @ Kkeys, you are changing the value of 65299, which controls where
the patterns come from. You can disable the @ and SHIFT key combination by
POKEing the value 128 into the memory location 1351, or by PRINTing a
CHRS(8). To reenable this feature, POKE a 0 into 1351, or PRINT a CHRS$(9).

Graphics Programming in BASIC 201

.Copying the Standard Set If you want to add your own special characters to
the built-in characters and still use some of the standard characters, you need to
copy the patterns stored in the character ROM to an area of user memory. This
situation is somewhat complicated in BASIC. The PEEK function automatically
reads RAM. This means that if you PEEK the area of memory containing the
character ROM, you do not get the ROM patterns at all, but the contents of the
RAM “underneath” the ROM. (See the banking section in Chapter 5.) You can
defeat the BASIC switch to RAM with the following POKE:

~ POKE 1177,62

You can then copy the upper case/ graphic ROM patterns to your RAM area (at
characters) with

FOR I = 0 TO 1023:POKE characters+I,PEEK(53248+I):NEXT I
or copy the upper/lower case ROM patterns with

FORI = O TO 1023:POKE characters+I,PEEK(54272+I):NEXT I
You must then restore BASIC’s subroutine with

POKE 1177, 63

Because using this method actually changes the operation of BASIC while its
subroutine is altered, restore the switch to RAM before you perform any other -
operations. ‘

High-Resolution Characters You can create custom character patterns in
RAM and use them instead of the ROM characters in your program. First, you
need to define your new characters. For each custom character use an 8 x 8 grid
similar to the one shown in the beginning of this section. The top row of the grid’
represents the top row of your character. Add up the bit values for the dots you
want on in this row. This sum is the first of eight data values for your character.
Do the same for each of the remaining rows.

Since your custom characters must appear in RAM, you must switch the
graphics chip to look at RAM. This is accomplished by clearing bit 2 of 65298
(8FF12), that is, ANDing its current value with 251.

POKE65R298,PEEK(65298)ANDR51 .
To reselect ROM, you must set this bit, that is, OR its current value with 4.

POKE65298,PEEK(65298)0R4

202 = Programming Graphics

You need to decide where in RAM your characters will be stored. They must be
stored in an area of RAM not otherwise used by your program. (See Chapter 5 on
moving BASIC and where BASIC programs reside.) Also, the graphics chip
always considers a 1K (1024-byte) section of memory (room for 128 characters) to
be its current character set. Therefore, your custom character set must begin on a
1K boundary. The boundary used is controlled by the upper 6 bits of 65299
($FF13). To specify the location of your character set, you can use the following
BASIC line:

POKE65299,(PEEK(65299)AND3)0Rx

where the value of x is determined from Table 4-2.

TaBLE 4-2. Custom Character Set Locations

X

Characters X Characters X Characters

Hex Dec Hex Decimal Hex Dec Hex Decimal Hex Dec Hex Decimal

$00
$04
$08
$0C
$10
$14
$18
$1C
$20
$24
$28
$2C
$30
$34
$38
$3C
$40
$44
$48
$4C
$50
$54
$58
$5C

0

4

8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92

$0000 0 |$60 96 $6000 24576 |$CO 192 $CO000 49152
$0400 1024 |$64 100 $6400 25600 |$C4 196 $C400 50176
$0800 2048 |$68 104 $6800 26624 |$C8 200 $CB00 51200
$0C00 3072 |$6C 108 $6C00 27648 |$CC 204 $CCO0 52224
$1000 4096 |$70 112 $7000 28672 |$DO 208 $DO000 53248
$1400 5120 |$74 116 $7400 29696 |$D4 212 $D400 54272
$1800 6144 |$78 120 $7800 30720 |($D8 216 $D800 55296
$1C00- 7168 |$7C 124 $7C00 31744 |[$SDC 220 $DC00 56320
$2000 8192 |$80 128 $8000 32768 |SE0 224 S$E000 57344
$2400 9216 |$84 130 $8400 33792 |S$E4 228 $E400 58368
$2800 10240 |$88 134 $8800 34816 |$E8 232 $E800 59392
$2C00 11264 |$8C 138 $8C00 35840 |SEC 236 SEC00 60416
$3000 12288 |$90 142 $9000 36864 |$FO 240 $F000 6 1440
$3400 13312 |$94 146 $9400 37888 |$F4 244 S$F400 62464
$3800 14336 |$98 150 $9800 38912 |$F8 248 S$F800 63488
$3C00 15360 |$9C 154 $9C00 39936 |SFC 252 $FCO0 64512
$4000 16384 |$A0 160 $A000 40960
$4400 17408 |$A4 164 $A400 41984
$4800 18432 |[$A8 168 $A800 43008
$4C00 19456 |SAC 172 $ACO00 44032
$5000 20480 |$BO 176 $B000 45056
$5400 21504 |$B4 180 $B400 46080
$5800 22528 |$B8 184 $B800 47104
$5C00 23552 |$BC 188 $BCOO 48128

Graphics Programming in BASIC 203

The value in the table for the character base address (characters) tells you
where to copy the ROM patterns to if you want to use some of the standard
characters. If you want to know where a specific character’s patterns begin, take
its screen code (see Appendix E), multiplied by 8, and add it to the character base
address. To copy the pattern of a specific character in the character ROM, use the
following:

FORI=OTO 7
POKE characters+new code*8+1,PEEK(ROM+old code*8+I)
NEXTI

where characters is the new character set base address, new code is the new screen
code for the character, ROM is the old base address (53248 for an upper
case/graphic character, or 54272 for an upper/lower case character), and old
code is the original screen code for the character.

High-Resolution Custom Characters Example Program

In this example, type the small letters inside the quotes without shifting, and type
the capital letters inside the quotes shifted.

10 POKE1177,62

{0 FORI-0T01023 ,

30 POKE8192+I,PEEK(54272+I)

40 NEXT

50 POKE1177,63

60 POKE65299,(PEEK(65299)AND3)0R32
70 POKE65298,PEEK(65298)AND251

80 POKE1351,128

90 FORI=-OTO7:READA:POKE8192+I A:NEXT
100 PRINT”The Temperature is 25@C”

110 PRINT”Hit a key to restore standard characters”
120 GETKEYA$

130 POKE65299,(PEEK(65299)AND3)0RR08
140 POKEB5298,PEEK(65298)0R4

180 POKE1351,0

160 END

170 DATA24,36,36,24,0,0,0,0

Line-by-Line Explanation
10 The BASIC function PEEK is altered to look at ROM.

204

20
30

40
50
60
70
80

90

100
110
120
130
140
150
160
170

Programming Graphics

The entire 128 character set is copied (8+128 = 1024).

The upper/lower case characters are copied from ROM to RAM at 8192
($2000).

Get the next byte.

The BASIC function PEEK is restored to normal operation.
The graphic chip character base address is set to 8192 ($2000).
The graphic chip reads character patterns from RAM.

The @ and SHIFT key combination does not switch the charaacter set
base address.

A new custom character is inserted into the first character (@) position.
A message including the new character is printed to the screen.

A prompt instructs the user of the program.

The program waits for keyboard input.

The graphic chip character base address is restored to 53248 ($3D000).
The graphic chip reads character pattérns from the character ROM.
The @ and SHIFT key combination is reenabled. .

Program execution ends.

The data for the custom character (a degree symbol).

Multicolor Characters One of the major reasons for creating a custom charac-
ter set is to use more than a single foreground color and the background colorin a
character cell. In multicolor text mode, a pair of bits determine which of four
colors a pair of pixels will be. The character pattern is organized in a paraliel
fashion with a high-resolution character, except that 2 bits together determine the
color of the corresponding pair of pixels on the screen. Each byte in the character
pattern determines the appearance of 8 pixels on the screen. The first 2 bits are the
first 2 pixels, the second 2 the next 2, and so on.
The bit patterns are assigned as follows:

Bit Pair Color Source

00 background 0 (65301)
01 background 1 (65302)
10 background 2 (65303)
11 foreground

Graphics Programming in BASIC 2058

As you can see, the first three bit patterns use global color sources. This means
you have three global (whole screen) colors. The last bit pattern uses the normal
color memory to get its color (and luminance), so that each character can have an
independent foreground color.

Using the bits in pairs this way limits the resolution of your character in the
horizontal direction. Sometimes this is too restrictive. The Plus/4 allows you to
mix high-resolution and multicolor characters on the same screen. The Plus/4
must be in multicolor mode. This is accomplished with

POKE 65287 ,PEEK(65287)0R16
To put the chip back in high-resolution mode use
POKE 65287 ,PEEK(65287)ANDR39

When the Plus/4 is in multicolor mode, the color (not luminance) chosen for a
given character cell determines whether the character occupying it is high resolu-
tion or multicolor. If the color associated with a given cell is greater than 8
(yellow), then the cell is multicolor. The actual foreground color of the cell is not
the color chosen (color) but the color given by

color-8

If the color associated with the cell is less than or equal to 8, then the cell is high
resolution and its actual color is the color chosen. This means that, when using
multicolor text mode, only the first eight colors are available for use as fore-
ground colors. However, all eight luminances are available for each of these
colors.

The background registers 65301-65303 used for coloring the nonforeground
pixel pairs can be assigned any of the 16 colors and 8 luminances. To calculate the
value needed, use

luminance*16+color-1

where the luminance is 0 through 7 and the color is chosen from the available
colors (1-16).

Note: In multicolor mode, the cursor is invisible. It is a good idea to return to
high-resolution character mode when exiting a program.

Multicolor Custom Characters Example Program

In this example, type the small letters inside the quotes without shifting, and type
the capital letters inside the quotes shifted.

206 Programming Graphics

10 POKE1177,62

20 FORI=@T01023

30 POKE8192+1,PEEK (54272+1)

40 NEXT

5¢ POKE1177,63

60 POKE65299, (PEEK (65299)AND3) OR32

70 POKE65298,PEEK (65298) AND251

80 POKE65287,PEEK(65287)0R16

90 POKE1351,128

100 POKE65301,65

110 POKE65302,0:POKE65303,93

120 FORI=0TO15:READA: POKE8512+I ,A:NEXT
130 PRINTCHRS (154) "Butterflies. Fly Free"
140 PRINTSPC(1@)" () "SPC(18)CHRS (153)" ()"
150 PRINTCHRS (144) "Hit a key to restore standard characters"
160 GETKEYAS

179 POKE65299, (PEEK(65299)AND3) OR208

180 POKE65298,PEEK (65298) OR4

190 POKE65287 ,PEEK (65287)AND239

200 POKE1351,0

210 END

220 DATA196,241,237,237,253,253,241,193
239 DATA76,68,236,236,252,252,60,12

Line-by-Line Explanation
10 Disable the switch to RAM of the subroutine called by PEEK.

20 Start loop to copy entire 1K character set.

30 Move upper/lower case character set to RAM, starting at location
8192.

40 Go back for the next byte.

50 Restore the subroutine called by PEEK.

60 Change the character base address of graphics chip to 8192.

70 Make graphics chip get the character patterns from RAM..

80 Put the graphics chip into multicolor mode.

90 Disable & SHIFT keys.

100 Set screen background color 0 to white with luminance 4 (gray).
4x16+2-1-65

110 Set background color 1 to black.
0*16+1-1=0

And, set background color 2 to light blue with luminance 5.
5x16+14-1=93

120

130

140

150

160
170
180
190
200
210

Graphics Programming in BASIC 307

Read the multicolor characters in the DATA statements, and replace
the parentheses characters (screen codes 40 and 41) with them.

8192+40+8=8512

PRINT a CHR$(154) to be in multicolor with foreground color blue,
followed by the sentence. When you run this program, note the
appearance of the standard characters PRINTed in multicolor. This
is because the bits are being interpreted as multicolor pairs.

PRINT a multicolor blue butterfly. Then change to multicolor green
(CHR$(153)) and PRINT a green butterfly. Note that in both butter-
flies the spot is light blue and the body is black. These areas use the
shared background color registers for their color information.

PRINT a CHR$(144) for high resolution with foreground color
black, followed by the message. Note that the characters now look
normal because their bits are being interpreted one at a time as high-
resolution on or off messages.

Wait for a key.

Restore graphics chip looking at the location of the character ROM.
Restore graphics chip looking at ROM.

Get out of multicolor mode.

Restore & SHIFT keys.

End of execution.

220-230 Data for the two halves of the butterfly.

Extended Color Mode In this mode each dot is individually controlled, as they
are in high-resolution characters; the difference is that you can specify any of four
background colors (of the bits that are 0) for each character. You can also still
choose an individual foreground color (of the bits which are 1) for each character
cell. In extended color mode, the number of characters available is cut to 64
(representing settings for 6 bits). The setting of the two high bits in the screen code
for a character determines which background color it will use.

Screen Code Character Pattern Background Color Register
0- 63 0-63 65301
64 - 127 0-63 65302
128 - 191 0-63 65303

192 - 255 0-63 65304

Example:

308 Programming Graphics

The background color registers are all global color sources. This means you have
four global (whole screen) colors. The foreground bits use the normal color
memory to get their color (and luminance), so each character can have an
independent foreground color.

To enter extended color mode, use

POKE 65286,PEEK(65286)0R64
To put the chip back in high-resolution mode, use
POKE 65286,PEEK(65286)AND191

The background registers 65301-65304, which are used for coloring the back-
ground pixels, can be assigned any of the 16 colors and 8 luminances. To calculate
the value needed, use

luminance*16+color-1

where the luminance is 0 through 7, and the color is chosen from the available
colors (1-16). The color assigned to background registers 63501 and 63502 can
also be controlled by the COLOR command for sources 0 and 3, respectively. The
remaining two color registers cannot be changed with the COLOR command.

Note: Inextended background color mode, the cursor is invisible. It is a good
idea to return to high-resolution character mode when exiting a program.

10 SCNCLR

20 POKE65286 ,PEEK (65286) OR64

3¢ FORI=1TO4

40 PRINT"COLOR, LUMINANCE FOR";I; :INPUTC,L
50 POKE65300+I,L*16+C-1:NEXT

60 FORI=@TO63

70 POKE3072+I,I

80 POKE3136+I,1+64

9¢ POKE3200+I,I+128

100 POKE3264+1,1+192

110 NEXT

120 1=0

130 FORC=0TO15 :FORL=@TO7

140 POKE2@48+I,L*16+C

150 POKE2176+I,L*16+C

160 I=I+1

170 NEXTL,C

18¢ PRINT"HIT KEY":GETKEYKS:POKE65286 ,PEEK (65286)AND191
190 COLORG,2,7

Graphics Programming in BASIC

Line-by-Line Explanation

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

Clear the screen.

Turn on extended color mode.

For each background color register:

Get a color and luminance.

Put the selection into the register and continue.

For each possible character:

Put up a set with background color 1.

Put up a set with background color 2.

Put up a set with background color 3.

Put up a set with background color 4.

Next character.

I points to a spot in color memory.

For each color and luminance:

Put color and luminance into color memory.

Put color and luminance into color memory.

Increment pointer.

Next luminance and color. _
Wait for a key press, then turn off the extended color mode.

Return the background color to white.

Smooth Scrolling

209

When the last line of the Plus/4 screen is filled with text, the screen is automati-
cally scrolled. That is, the top line is discarded, the rest of the lines are moved up
one line, and the last line is cleared. Thus, the text moves up a whole line at a time.
Insome applications it is desirable to scroll the text (or bit map) smoothly, that is,
one pixel at a time, either vertically or horizontally. ‘

Vertical scrolling is handled by memory location 65286 (SFF06). Normally, the
first step is to shrink the screen to 24 lines. The effect of this is to expand the
border to cover one character line. The information to be added at the top or

210 Programming Graphics

bottom of the screen can then be placed invisibly on the line and scrolled onto the
screen. To shrink the screen, bit 3 of the scroll register must be cleared with

POKE 65286,PEEK(65286)ANDR47
To restore the screen later, use
POKE 65286,PEEK(65286)0R8

The low three bits of the scroll register determine the scrolling position; normally
it is 3. To set the scrolling position, use

POKE 65286,(PEEK(65286)ANDR48)0Rscrolling position

When the scrolling position is set to 7, the bottom line is completely invisible and
the top line is completely visible. Then, as the scrolling position is decreased to 0,
more and more of the bottom line is revealed, and the top line is concealed. When
the scrolling position is 0, all but the bottom pixel of the bottom line is visible, and
all but the bottom pixel of the top line is invisible.

If the existing lines are each moved up one, and a new line is placed at the
bottom while the scrolling position is simultaneously reset to 7, asmooth upward
scroll is achieved. To accomplish this, the operation should be done in machine
language and timed with the raster beam (see Chapter 5). But upward scrolling
can be done fairly well in BASIC. The example program shows an upward scroll.
Downward scrolling is accomplished by reversing the operations.

Horizontal scrolling is handled by memory location 65287 (§FF07). The first
step is normally to shrink the screen to 38 columns. The effect of this is to expand
the border to cover two character columns. Then, the information to be added at
the left or right of the screen can be placed invisibly on the line and scrolled onto
the screen. To shrink the screen, bit 3 of the scroll register must be cleared with

POKE 65287 ,PEEK(65287)ANDR47
To restore the screen later, use
POKE 65287 ,PEEK(65287)0R8

The low three bits of the scroll register determine the scrolling position; normally
it is 0. To set the scrolling position, use

POKE 65287,(PEEK(65287)ANDR48)0Rscrolling position

When the scrolling position is set to 0, both the left and right columns are
completely invisible. Then, as the scrolling position is increased to 7, more and

Graphics Programming in BASIC al1

more of the left column is revealed, and the second column from the right is
concealed. When the scrolling position is 7, all but the left pixel of the left column
is visible, and all but the right pixel of the second column from the right is
invisible.

If the information in each column is moved right, and a new column is added
on the left while the scrolling position is simultaneously cleared to 0, a smooth
right scroll is obtained. This is best done in machine code. A left scroll is obtained
by reversing the procedure.

Smooth Scrolling Example Program

10 SCNCLR:FORI=0T024:GOSUB120:NEXT
20 SR=65286

30 FORT=1TOR0:NEXT

40 POKESR,(PEEK(SR)ANDR40)OR7

50 GOSUB120

60 FORI=6TOOSTEP-1

70 FORT=1TO60:NEXT

80 POKESR,(PEEK(SR)AND240)0ORI

90 NEXT

100 GETK$:IFK$=""THENGOTO30

110 POKESR,(PEEK(SR)AND240)0OR11:END
120 PRINTCHR$(13) “HIT A KEY TO STOP SCROLLING”;: RETURN

Liné-by-Line Explanation

10 Clear the screen and fill it with the message.

20 Set SR to scroll register address.

30 Wait loop.

40 Set to 24 lines and set the scroll register value to 7.
50 Put the message on the hidden line.

60 Count down for scroll register value.

70 Wait loop.

80 Set scroll register value.

90 Go back for next value.

100 See if a key has been pressed. If not, return to line 30.
110 Set to 25 lines and the default scroll register value (3).

120 Subroutine to print carriage return followed by message.

213 Programming Graphics

Animation

Computer animation consists of rapidly displaying a series of graphics, each
changed somewhat from the previous one, to create the illusion of motion. There
are a number of methods for doing this. The more advanced can be accomplished
only through direct control of the graphics chip. Also, to attain the speeds
required to fool the human eye, machine language programming is usually
necessary.

Only a couple examples of straightforward methods using BASIC are pre-
sented here. To get more involved with animation, study the concepts of directly
controlling the chip from machine language in the next section and experiment
with them.

Animation Using Characters Character animation can be extremely convinc-
ing, even in BASIC. The pattern on the screen is defined by only 1 byte (a screen
code placed in the proper character cell), or possibly 2, when color changes are
occurring. So the pattern can be changed just by changing the value of that screen
code. This can be done very quickly.

For serious animation, direct access to the screen and color memories (with
POKE statements) is usually used:. For information on these memories, see the
summary of memory maps later in this chapter. This example uses the CHAR
statement to place multicolor characters on the screen.

The animation consists of three positions (frames) of the two-character-wide
multicolor butterfly presented earlier. The first (frame 1) shows its wings wide
open. The second (frame 2) shows them partially closed. The last (frame 3) shows
them totally closed. To animate the butterfly, the frames must be shown in the
sequence 1,2,3,2,1,2,3,2,1, For the butterfly to appear to move, each
successive frame must be shown in a different (adjacent) pair of character cells
from the previous frame. So, we must erase the previous frame in addition to
showing the next frame.

Character Animation Example Program

In this example, type the small letters inside the quotes without shifting, and type
the capital letters inside the quotes shifted.

10 POKE11l77,62

2@ FORI=@TO0727

30 POKEB8192+I ,PEEK(54272+1)

40 NEXT

50 POKEl1l77,63

60 POKE65299, (PEEK (65299)AND3) OR32
70 POKE65298,PEEK (65298) AND251

80 POKE65287,PEEK(65287)0R16

Graphics Programming in BASIC

90 POKE1351,128

100
110
120
130
140
150
160
170
180
190
200
219
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

POKE65301,65

POKE65302,0:POKE65303,93

FORI=0@TO47 : READA: POKE8512+1,A:NEXT
PRINTCHRS (147)CHRS (154)" Butterflies Fly Free"
PRINTCHRS (13) ;CHRS (144) " Hit key for standard characters"
Y=24:Y1=24

GETKS : IFK$<>""THENPRINTCHRS (144) :GOT0220
AS=" () ":GOSUB270

AS="*+":GOSUB270

AS$=",-":GOSUB270

AS="*+":GOSUB270

GOTO160

POKE65299, (PEEK (65299) AND3) OR208
POKE65298, PEEK (65298) OR4
POKE65287 , PEEK (65287) AND239

POKE1351,0

END

CHARL,12,v1," "
CHAR1,12,Y,CHRS (154) +A$

CHAR1,22,Y1," "

CHAR1,22,Y,CHRS (153) +A$
Y1=Y:¥Y=Y-1:IFY<OTHENY=24

RETURN
DATA196,241,237,237,253,253,241,193
DATA76,60,236,236,252,252,60,12
DATAS2,49,57,61,61,49,49,49
DATAl12,48,176,240,240,48,48,48
DATA4,3,3,3,3,3,3,3
DATA64,0,0,0,0,0,9,0

Notes

130

140

270
290

213

There is a space between the opening quotation mark and the shifted B.

There are two spaces between the words Butterflies and Fly.

There is a space between the opening quotation mark and the shifted H.
There are two spaces between the words for and standard, and between

the words standard and characters.
There are two spaces between the pair of quotation marks.

There are two spaces between the pair of quotation marks.

Line-by-Line Explanation

10
20
30

Disable switch to RAM of subroutine called by PEEK.
Start loop to copy first 90 characters.

Move upper/lower case characters to RAM starting at location 8192.

214

40
50
60
70
80
90
100

110

120

130

140

150
160

170
180
190
200
210
220
230
240

Programming Graphics

Go back for next byte.

Restore subroutine called by PEEK.

Change character base address of gfaphics chip to 8192.
Make graphics chip get character patterns from RAM.

Put graphics chip into multicolor mode.

Disable €8 SHIFT keys.

Set screen background color 0 to white with luminance 4 (gray).
4%16+2-1=65

Set background color 1 to black.

0*16+1-1=0

And set background color 2 to light blue with luminance 5.
5%16+14-1=93

Read the multicolor characters in the DATA statements, and replace
the characters with screen codes 40 through 45.

8192+40+8=8518

PRINT a CHR$(154) to be in multicolor with foreground color blue,
followed by the sentence.

PRINT a carriage return (CHR$(13)), a CHR$(144) to be in high
resolution with foreground color black, and the message.

Start the butterflies at the bottom of the screen.

Look to see if a key was hit. If so, change the ’foreground color to
black, and go on to finish the program at line 220.

Set up for frame 1 and call output subroutine at 270.

Set up for frame 2 and call output subroutine.

Set up for frame 3 and call output subroutine.

Set up for frame 2 and call output subroutine.

Return to line 160 to go again.

Restore graphics chip looking at the location of the character ROM.
Restore graphics chip looking at ROM.

Get out of multicolor mode.

Graphics Programming in BASIC 218

250 Restore @ SHIFT keys.

260 End of program execution.
270 Put two space characters in the position of the previous frame for the

rightmost butterfly (saved in Y1).

280 Set color to multicolor blue and put up the current frame for the
rightmost butterfly.

290 Put two space characters in the position of the previous frame for the
leftmost butterfly.

300 Set color to multicolor green and put up the current frame for the
leftmost butterfly.

310 Save the current position in Y1. Change Y to plot the butterflies one

character line higher on the next frame. But if they fly off the screen,
restart them at the bottom.

320 End of subroutine.
330-380 Data for the three frames of the butterfly.

Animation in Multicolor Graphics When using a bit-mapped screen for ani-
mation, you can actually have the moving objects appear to move in front of a
stationary background. Usually this is done in machine language because consid-
erable speed is required to avoid flicker. But, an example program can be done in
- BASIC using the SSHAPE and GSHAPE statements.

The example uses two frames of a pogo stick jumper. First, the background
information that will be under the jumper is saved (SSHAPE). Then, he is plotted
to the screen (GSHAPE). To prepare for the next frame, the jumper is erased (by
replacing the background saved before), and the process starts again.

The SSHAPE statement allows you to save a portion of the screen in a string
variable. Because a single string can be at most 255 bytes long, only a limited
amount of the screen can be saved at one time. If you try to save too large a
portion, a STRING TOO LONG ERROR results. SSHAPE saves only the
pattern of bits in the area, not the color information.

The GSHAPE statement places such a string anywhere on the screen. The
colors used are the current colors. If they have changed since the shape was saved,
the new ones are used. The last parameter of GSHAPE lets you decide how the
shape is to be placed on the screen:

0 = shape replaces background

1 = the inverted shape replaces background

216 Programming Graphics

2 = the shape is ORed with the background

3 = the shape is ANDed with the background

4 = the shape is XORed with the background
The effect of this parameter depends on the actual bit patterns used in the shape
and on the background. In multicolor mode, the bit patterns are determined by

which color sources (0-3) are used to draw the shape. Tables 4-3 through 4-7
show the results of using each parameter value.

TABLE 4-3. Resulting Color Source Using a Parameter Value of 0

Color Source Used on Screen

COLOR SOURCE

USED IN SHAPE 0 1 2 3
0 0 0 0 0
1 1 1 1 |
2 2 2 2 2
3 3 3 3 3

TABLE 4-4. Resulting Color Source Using a Parameter Value of 1

Color Source Used on Screen

COLOR SOURCE

USED IN SHAPE 0 1 2 3
0 3 3 3 3
1 2 2 2 2
2 1 1 1 1
3 0 0 0 0

TaBLE 4-5. Resulting Color Source Using a Parameter Value of 2

Color Source Used on Screen

COLOR SOURCE

USED IN SHAPE 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 "3 3

Graphics Programming in BASIC 217

TABLE 4-6. Resulting Color Source Using a Parameter Value of 3

Color Source Used on Screen

COLOR SOURCE

USED IN SHAPE 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

TABLE 4-7. Resulting Color Source Using a Parameter Value of 4

Color Source Used on Screen

COLOR SOURCE

USED IN SHAPE 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

The example program places a s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>