Programmer’s Reference Guide for the

T T S

Programmer’s
Reference Guide
for the
Commodore Plus/4

Programmer’s

Reference Guide
for the |
Commodore Plus/4

Cyndie Merten
Sarah Meyer

r SCOTT, FORESMAN AND COMPANY
| o Glenview, Illinois London

Graphics characters that appear in Table 3-1 and Appendixes C and E are used with permission of Commodore
Business Machines, Inc.

Copyright © 1986 Cyndie Merten and Sarah Meyer.
All Rights Reserved.

Printed in the United States of America.

ISBN 0-673-18249-5

Library of Congress Cataloging-in-Publication Data

Merten, Cyndie.
Programmer’s reference guide for the Commodore
Plus/4.

Includes index.
1. Commodore Plus/4 (Computer)—Programming.
2. BASIC (Computer program language) 1. Meyer, Sarah C.
I1. Title.
QA76.8.C65M47 1986 005.2'65 85-18409
ISBN 0-673-18249-5

23456-RRC-90 89 88 87-86

The following are trademarks of Commodore Business Machines, Inc.: Commodore and the Commodore
logo, Commodore Plus/4, Commodore 16, Commodore 64, VIC-20, VIC-1541, 1531 Datassette, C2N/ 1530
Datassette, Modem/300 Model 1660, MPS-801, Joystick T-1341, VIC-1526, VIC Modem 1600,
Automodem 1650. The following is a registered trademark of Parker Brothers: Boggle.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. Neither the author nor
Scott, Foresman and Company shall have any liability to customer or any other person or entity with
respect to any liability, loss, or damage caused or alleged to be caused directly or indirectly by the programs
contained herein. This includes, but is not limited to, interruption of service, loss of data, loss of business or
anticipatory profits, or consequential damages from the use of the programs.

Preface

The Commodore Plus/4 represents an important advance in home computer
design. The low-priced Plus/4, which Commodore refers to as its productivity
computer, includes significant improvements over the phenomenally popular
Commodore 64 and over any other computer in the home computer class. The
built-in features include an expanded version of BASIC (Version 3.5), a machine-
language monitor, graphic-drawing commands, improved disk- and error-
handling commands, and integrated software that combines three programs:

A word processor _
A spread sheet, with a graph generator linked to it

A file manager

The built-in programs are accessed by a function key.

The Plus/4 has 64 K RAM builtin, 60671 bytes of which are available for use in
BASIC. The Plus/4 also has eight defined function keys that are easy to redefine
with the KEY command. Escape key functions simplify screen editing tasks and
let you create screen windows. The Plus/4 also has simple color settings that let
you select from 121 different hues. In addition, the graphics modes let you use the
drawing commands to draw pictures in high-resolution or multicolor modes. You
can also select split-screen graphics modes that display regular text in a five-line
screen window while the top of the screen is in a graphic mode. Graphic handling
is much easier in BASIC Version 3.5 than itis in the Version 2.0 built into the
Commodore 64.

Although the Plus/4 is superior to the Commodore 64, it does have one
disadvantage: a full library of software is not yet available for the Plus/4. In
addition, the Plus/4 does not have sprite graphics, which are available on the
Commodore 64, and the Plus/4 music features are not as sophisticated, although
music is easier to program.

When Commodore introduced the Plus/4, it was called the Commodore 264.
The name was changed to Plus/4 when Commodore decided to include the
built-in integrated software. At the time of the name change, Commodore also

v

vi Preface

announced the Commodore 16, which is compatible with the Plus/4. The Com-
modore 16 has only 16 K RAM and no built-in software. The two new computers
are compatible, so all Commodore 16 software and peripherals are compatible
with the Plus/4.

About This Book

The Programmer’s Reference Guide for the Commodore Plus/4 is a reference
book for programmers of all levels. The book provides information for both
BASIC and machine language programmers. The authors assume that readers
are familiar with the general operations of the Plus/4 and understand all the
keyboard functions. Neither BASIC nor machine language is taught in this book,
but extensive information is provided on programming in both languages. Pro-
grammers of either BASIC or machine language will find the information they
need to write programs for themselves or for commercial distribution.

The authors have written and tested all the programs in this book. (Please note
that the programs are copyrighted and cannot be used for commercial purposes.)
Cyndie Merten, programmer and mathematician, is a founding member of
Dyadic Software Associates, a group of microcomputer consultants. Sarah
Meyer is a free-lance technical writer who has published another book about the
Plus/4. Together they have published several articles about Commodore comput-
ers. The authors combine their perspectives as programmer and writer to produce
abook that is thorough, technically accurate, and clearly written. Please note that
Commodore Business Machines, Inc. has not been involved in the preparation of
this book. The authors bear responsibility for the accuracy of the material
presented here.

The Programmer’s Reference Guide for the Commodore Plus/4 is divided into
six chapters. The chapters cover BASIC, the built-in software, programming
techniques, machine language, graphics, and peripheral devices. Memory maps
and other technical information are covered in the appendixes.

Chapter 1, The BASIC Language, provides complete descriptions of all 75+
commands, 36 functions, and the system variables that constitute BASIC 3.5. To
simplify looking up BASIC keywords, the elements of BASIC 3.5 are presented
in alphabetical order, with commands, functions, and system variables inter-
mixed. For each keyword, the following information is given:

1. The abbreviation (when there is one).
2. A complete syntax, so you can quickly review the order of parameters.
3. A description of all uses for the command or function.

4. An explanation and range of possible values for each parameter.

5. Examples.

Preface vii

Graphics commands are given additional coverage in Chapter 4, Programming
Graphics. Commands for controlling peripherals are also discussed in Chapter 6,
Using Peripheral Devices. Chapter 3, Some Programming Techniques, also
provides more information on BASIC commands.

The commands for use in the built-in programs are explained in Chapter 2, The
Built-In Software. Chapter 2 is divided into four sections: word processor com-
mands, commands for formatting printed output, spreadsheet commands
(including commands for controlling the graph generator), and file manager
commands. Within each section, commands are explained in alphabetical order.
Examples are given where appropriate.

Chapter 3, Some Programming Techniques, is a collection of sections on
diverse programming topics. Both BASIC and machine-language programming
techniques are discussed. Sections include coverage of the following topics:

Editing the screen

Using the Escape key screen-editing functions
Using screen windows

Using text strings

Redefining the function keys

Using mathematical functions

Programming sound and music

Using arrays

Error handling

Chapter 4, Programming Graphics, explains the operations of the graphics
modes in both BASIC and machine language. Color and screen control, drawing
commands, and animation are among the topics discussed in this chapter. Many
example programs are also provided.

Chapter 5, Machine Language on the Commodore Plus/4, explains the use of
the built-in monitor commands and the application of 6502 machine-language
programming on the Plus/4. This chapter does not teach machine language, but
it does review the instruction set and describe the operatmg system for machine
language programmers of all levels.

Chapter 6, Using Peripheral Devices, describes the operations of the disk drive,
cassette recorder, printers, modem, and joystick in BASIC and machine lan-
guage. Each peripheral, and the commands that control it, is explained in a
separate section. Particular attention is given to disk-handling operations. Disk
operating system (DOS) error messages are explained in Appendix A.

The appendixes are provided to explain additional technical information and
to provide quick reference material. The six appendixes cover error messages for

viii Preface

BASIC and DOS errors, BASIC tokens, character string (CHRS) codes, ASCII
codes, screen display codes, a musical note chart, and memory and register maps.

The Programmer’s Reference Guide for the Commodore Plus/4 also contains
an extensive index that is designed to make finding information in this book
quick and easy. We advise users to consult the index first when seeking specific
information.

The authors have taken great care to ensure accuracy and thoroughness in the
topics that are presented in this book. We cannot guarantee, however, that the
book is error free. We have tried to make the book easy to use and understand,
and we hope you find it helpful and instructive. We welcome your comments and
corrections.

Acknowledgments |

The authors thank Bill Hindorff for reviewing this manual. We are grateful for his
suggestions and constructive criticism.

We thank COMMODORE Magazine for publishing a Plus/4 memory map in
their November/ December 1984 issue and Jim Butterfield for sharing his map in
Transactor (Volume 5, Issue 5).

Also of great assistance in preparing the disk drive section of this manual was
Richard Immers and Gerald G. Neufeld’s book, Inside Commodore DOS.

1 The BASIC Language

This chapter contains information on each of the BASIC commands, functions,
and system reserved variables. Other important details about BASIC are
included in the beginning sections.

The Elements of BASIC

The BASIC built into the Plus/4 is called Version 3.5. This version of BASIC is
considerably more sophisticated than the Version 2.0 built into the Commodore 64.
Version 3.5 contains about twice the number of BASIC commands and is easier-
to use.

This chapter explains each of the 75+ BASIC commands in Version 3.5. In
addition, all BASIC functions are explained. The functions and the commands
are explained together in alphabetical order. The possible parameters of all
commands and functions are discussed. For some commands, such as the draw-
ing commands, you must type a place-holder comma when you use the default
value for a parameter. Be sure to note the requirements for each command.

BASIC lets you perform a large variety of tasks; despite this versatility, BASIC
has very strict syntax rules. You must enter commands according to their formats
and use only legal parameters. When you make a mistake, BASIC usually aborts
the program and displays an error message. Appendix A explains the error

- messages that BASIC prints to help you diagnose your mistakes. The description
of the HELP command explains how to use the HELP key to find errors in
programming lines. ' _

Note the following definitions if you are unsure of some terms:

Keyword A keyword is a word that is reserved as part of BASIC. Keywords
include commands, parts of commands (such as TO, which is part of the FOR
command), operators, function names, and certain reserved variables such as
TI$, a hardware timing value, and ER, an error-diagnosing variable. Keywords

cannot be used as variable names or be embedded in variable names.
. 1

3 The BASIC Language

Function A function is a text string or numeric operation that returns a value.
You can use any of the functions that are part of BASIC, and you can create your
own with the DEF FN command.

Operator We use the term operator to mean a symbol or keyword (such as
AND) that performs a mathematical task or compares two values. The types of
operators available in BASIC are mathematical, comparison, and logical.

Parameter A parameter is a nonkeyword part of a BASIC command or func-
tion. Parameters usually have multiple possible values. You supply the parameter
to define the way you want to use the BASIC command. Some parameters must
be used in a command and many others are optional.

Default Some parameters have a default value, which means that a certain
value is automatically used for that parameter if you do not specify some other
value. To select the default value, you can generally just omit the parameter. In
some commands, such as CIRCLE, you must type a placeholder comma for a
default value if additional parameters follow the default. For example, to accept
the default value for the color source in a CIRCLE command, type a comma in
the color source position. The color source is the first parameter, so the command
could look like this: CIRCLE, 160,100,60,50.

Expression Occasionally we will use the term expression to mean a number or
string that can be a constant, variable, or function that results in an appropriate
value. :

Constants and Variables

Constants are data values that you can use in a BASIC command. Variables are

symbolic names that stand for one or more possible values in a BASIC command.

For example, in the command PRINT “TOTAL:";T, the character string TOTAL

is a constant and T is a variable that stands for the numeric value being printed.
BASIC 3.5 accepts three types of constants and variables:

1. Integer numbers (whole numbers)
2. Floating-point numbers (decimal numbers)

3. Character strings (text)

The Elements of BASIC 3
Data Types

Floating-point numbers can be any type of number, whole or decimal (decimal
numbers are also called real numbers), between 2.93873588E-39 and
1.70141183E+38, the negatives of those numbers, or zero. Floating-point
numbers are stored in RAM using a 5-byte binary format.

Integer numbers can be any whole number between -32767 and 32767. (Note
that you can use larger and smaller values for floating-point numbers.) Numbers
with decimal parts are not accepted; they are truncated and ignored by BASIC.
Integer numbers are stored in RAM in a 5-byte binary format. Numbers in
integer arrays are stored as 2-byte binary numbers.

Character strings, or text strings, can be any characters in quotes, including
numbers, blank spaces, and special symbols. The only keyboard character that
cannot be directly included in a character string is a quotation mark. This is
impossible because a quotation mark is used to begin and end strings. If you try to
type a quotation mark in a string, BASIC assumes the quotation mark signifies
the end of the string; any additional characters are assumed to be a variable name.
For example, the command PRINT "HELLO” MOM prints HELLO 0. BASIC
prints the 0 as the value for what it assumes is the variable MOM. However, a
quotation mark may be used in a string with the help of the CHRS$ function. Note
that a number in quotation marks is treated like any text and has no mathematical
value.

BASIC discriminates between these three data types in variable form by the
way you name the variable. The three variable types are shown in Table 1-1 with
the symbols used to distinguish them.

Floating-point variables can stand for any type of number, whole or decimal,
between 2.93873588E-39 and 1.70141183E+38, the negatives of those numbers,
or zero. Integer variables can stand for any whole number between -32767 and
32767. (Note that you can use larger and smaller numbers for floating-point
variables.) Numbers with decimal parts are not accepted. If you assign a decimal
number to an integer variable, the decimal part of the number is ignored. For

TABLE 1-1. BASIC Variable Types

Floating Point Integer Character String
SyMmBoL None % 3
MEANING Decimal or Whole numbers Characters
whole numbers only in quotes

EXAMPLES X, X5, RX X%, X5%, AGE% S$, R58, NAMES$S

4 The BASIC Language

example, if you assign 1.99 to X%, the value accepted for X% is 1. The decitial
part is truncated, not rounded.

Character string, or text string, variables can stand for atiy characters in
quotes, including numbers, blank spaces, and spemal symbols. The only key-
board character that cannot be directly included in a character string is a
‘quotation mark. A number in quotation marks is treated like any text and has no
mathematical value.

Scientific Notation

Numbers can appear as simple numbers or in scientific notation. In scientific
notation, a number is reduced to its simplest one-whole-digit form. The number
of missing digits is shown in the exponent. The format for representing numbers
in scientific notation is as follows:

mantissa E sign exponent

The mantissa is a floating-point number with one whole digit (e.g., 1.55). The
E, which is the operator for scientific notation, stands for times 10 raised to the
following power. The sign is a negative or positive sign; it indicates whether the
exponent is negative or positive. The exponent is the absolute value of the power
to which the number 10 is raised. This is always a whole number.

Both the mantissa and the exponent can be positive or negative numbers. The
following examples show how the signs of each number affect the value of the
number being represented.

Mantissa Exponent Number Example

Positive Positive Positive 1E+03 = 1000
Positive Negative Positive fraction 1E-03 = .001
Negative Positive Negative -1E+03 = -1000
Negative Negative Negative fraction ~ -1E-03 = -.001

BASIC automatically displays numbers with absolute value smaller than .01 or
higher than 999999999 in scientific notation. If you enter a number outside this
range without typing it in scientific notation, BASIC rounds the number. This
rounding can cause a slightly inaccurate result if the number is used in a calcula-
tion. To avoid this distortion, always enter small or large numbers in scientific

“notation. In any case, BASIC can keep track of only about nine decimal digits in
the mantissa.

The Elements of BASIC 8
Variable Ngmes

Variable names can be one letter followed by other letters or numbers, plus either
% or $ when appropriate. Note, however, that although longer variable names are
accepted, BASIC reads only the first two characters (plus $ or %) in any variable
name. Additional characters are ignored; use them only to make your program
more readable. Because BASIC reads only the first two characters, make sure all
variables in a program have unique names for the first two characters. In other
words, do not use COMPANYS$ and COUNTRYS as variables in the same
program unless you want them to have the same value.

Also be sure that variable names do not contain any BASIC keywords. If this
occurs, the program aborts in a SYNTAX ERROR. For example, do not use a
variable such as WORDEF, which contains the keyword DEF. Keywords cannot
appear in variable names even if they are not the first two characters.

Using Variables in Parameters

Note that in most cases a variable can be used in place of a number or text string in

acommand parameter. The variable must, of course, be the right type of variable.

You can generally use a calculation in place of a number or numeric variable in a

command parameter. For example, any of the following forms is legal:
FORX=1TO5

FORX=1TO A

FOR X =ATO B-1

Arithmetic Operators

Table 1-2 shows the operators that are used for solving mathematical problems.
Note that the multiplication symbol is an *, not an x, and that the exponentiation
symbol is an up arrow.

TaBLE 1-2. Mathematical Operators

t Exponentiation
* Multiplication
/ Division

+ Addition

- Subtraction and negation

(-] The BASIC Language

BASIC solves compound mathematical problems in this order:

First Priority: Exponentiation

Second Priority: Multiplications and divisions
Third Priority: Additions and subtractions
Fourth Priority: ~ Comparison operations
Fifth Priority: Logical NOTs

Sixth Priority: Logical ANDs

Seventh Priority: Logical ORs

When a problem contains more than one calculation from each priority group,
the problems of the same priority are solved left to right.

Parentheses override this priority scheme. BASIC solves parts of a problem
that are enclosed in parentheses before any other parts of a calculation. Multiple
problems within parentheses are solved according to the standard priority order.
Problems can contain multiple sets of parentheses, but you must be sure that the
number of left parentheses equals the number of right parentheses. When paren-
theses are nested within parentheses, the calculations in the innermost set of
parentheses are solved first.

Comparison, or Relational, Operators
BASIC recognizes six symbols that are used to compare two values. These
symbols, which are called either comparison operators or relational operators,

are described in Table 1-3. The comparison operators can be used to compare
constants, variables, numbers, or text strings.

TasBLE 1-3. Comparison Operators

> The left-side value is greater than the right-side value.
< The left-side value is less than the right-side value.

= The values are equal.

<>or>< The values are not equal.

=> or >= The left-side value is equal to or greater than the right-side value.
<= or =< The left-side value is less than or equal to the right-side value.
Logical Operators

You can also use logical operators in calculations and in comparisons of values.
There are three logical operators: AND, OR, and NOT. These operators are also

The Elements of BASIC 7

called Boolean operators. Their role is to check the truth value of two values,
which may be constants, numeric variables, or calculations. A result of 0 is false,
and any other value is considered true.

Numeric values (operands) on either side of a logical operator should be
integer numbers, not floating-point numbers, so that they are between -32767
and 32767. If you use a floating-point number, it is converted to an integer
number. The result of a logical operation is always an integer value.

You can also use the logical operators to AND or OR individual bits (binary
digits) in two operands. You can use NOT to invert individual bits in a single
operand.

The following chart shows how each of the logical operators provides a result
after combining the truth values of two values. A value of -1 is used for a true
result.

-1 AND -1=-1 -IOR-1=-1 NOT-1= 0 -1 XOR-1= 0
-1 AND 0= 0 -1OR 0=-1 NOT 0=-1 -1 XOR 0=-1

0OAND-1= 0 OOR-1=-1 0 XOR -1=-1
O0AND 0= 0 OOR 0= 0 0XOR 0= 0
Logical AND

AND requires both values to be true for the result of the ANDed expression to be
true. Any other combination produces a false result. AND lets you set compound
comparisons in a conditional command such as IF or WHILE. When you join a
compound IF or WHILE command with AND, the result of the compound
comparison is false if one or both of the conditions are false. For example

10 INPUT "AGE, ANNUAL INCOME”; X,Y

20 IFX=>60ANDY<=10000 THEN PRINT “ELIGIBLE”: ELSE PRINT
“INELIGIBLE”

RUN

AGE, ANNUAL INCOME ? 60, 15000

INELIGIBLE

RUN

AGE, ANNUAL INCOME ? 65, 9900

ELIGIBLE

The IF command in the first execution is false because only one IF condition is
true (X is greater than or equal to 60, but Y is not less than or equal to 10000).
Therefore the THEN clause does not execute, and the ELSE clause does execute.
In the second execution of the program, the IF command is true because both the
first AND the second condition are true.

8 The BASIC Language

Logical OR

OR requires only one of the two conditions to be met for the compound expres-
sionto be true. An ORed comparison is false only when both values are false. For
example

10 INPUT “AGE, ANNUAL INCOME";X, Y
20 IF X=>60 OR Y<=10000 THEN PRINT “ELIGIBLE”: ELSE PRINT
“INELIGIBLE”

RUN

AGE, ANNUAL INCOME ? 60, 18000
ELIGIBLE

RUN

AGE, ANNUAL INCOME ? 68, 9900
ELIGIBLE

RUN

AGE, ANNUAL INCOME ? 885, 12000
INELIGIBLE

This modification of the previous program shows the difference between AND
and OR. In the first program, the input 60 and 15000 makes the IF command false
because both conditions must be met before the IF command is true. In the
second program with OR in the IF command, the same input makes the IF
command true because only one of the two conditions has to be met for the whole
IF command to be true. The third execution shows that the only time ORed IF

- commands are false is when NEITHER condition is met.

Logical NOT

NOT is somewhat different from AND and OR. NOT does not compare two
values. Instead, NOT lets you negate any value or comparison operator. For
example, we will add NOT to an IF command that compares a value to see if it is
greater than another value: IF NOT X > Y. Without the NOT, this command
checks to see if X is greater than Y..When NOT is added, this command checks to
see if X is NOT greater than Y; in other words, if X is less than or equal to Y.
When you use NOT, you must type NOT before the values you are comparing.
This may seem awkward because we would say “if X is NOT greater than Y,” but

The Elements of BASIC 9

you must put the NOT just before the value or comparison to negate or the
command will cause a syntax error, which always stops a program. You might
think of NOT as changing the meaning of X > Y to “unless X is greater than Y.”

The following comparisons show how NOT affects comparison operators. The
comparisons on the right are the same as those on the left:

X>Y sameas NOTX<=Y
X<=Y sameas NOTX>Y
X<>Y sameas NOTX=Y
X=Y sameas NOTX<>Y

The last NOT clause contains a double negative: NOT and <> (not equal).
Double negatives, though discouraged in most English applications, are accept-
able in BASIC. But like double negatives in English, double negatives in BASIC
cancel each other, so NOT X <> Y is the same as X = Y. -

This short program uses NOT to make the opposite of the comparison opera-
tor typed in the IF command:

10 INPUT "WHAT'S YOUR AGE"; A
R0 IF NOT A => 21 THEN PRINT “USER IS A MINOR”: ELSE PRINT
IIOKII

RUN

WHAT’S YOUR AGE ? 20
USER IS A MINOR

RUN

WHAT'S YOUR AGE ? 21
OK

The NOT makes the greater-than-or-equal-to symbol mean this: unless A is
greater-than-or-equal-to 21, THEN print USER IS A MINOR. The comparison
is the same as IF A < 21.

Exclusive OR (XOR)

The exclusive OR, which is called XOR, is not a standard logical operator. XOR
is used in machine language (EOR), and it is used in the WAIT command to
invert the comparison of two bits. When both XORed bits have the same value,

10 The BASIC Language

either both 0 or both 1, the result of the comparison is 0. When the two XORed
bits are not equal, the result of the comparison is 1.

Comparing Text Strings

You can use the standard comparison operators to compare text strings. Strings
~ are compared character by character; blanks are considered to be significant
characters. So, for example, “WORD” does not equal “WORD ”. Each charac-
ter is evaluated according to its PET/CBM character set (CHRS$) number (see
Appendix C). This character set gives a number value to every possible character.
“A”(65) is less than “B” (66) is less than “C”(67), and so forth. A blank has a value
of 32, so it is less than any letter, but significant nonetheless. “WORD”is less than
“WORD ” because the blank in “WORD ” gives that string a greater value.
Consider the expression A$=BS$. If all characters in all character positions in
" the two strings are equal, a truth result (-1) is returned. False comparisons
produce a 0 result. The result of a string comparison is always an integer value (0
or -1), so you can use the result in a mathematical calculation. Note, however,
that you cannot use a false result as a divisor because division by zero is illegal.

BASIC Abbreviations

Most BASIC keywords can be abbreviated. These time-saving abbreviations are
shown in Table 1-4. You can use abbreviations to “cheat” on the 88-character-
per-command line limitation. But when a line containing abbreviations is
LISTed, the abbreviations are converted into spelled-out keywords. You cannot
edit and reenter such a line using the screen editor if it is more than 88 characters
when LISTed. Only the first 88 characters will be accepted. Retype the line with
the abbreviations instead.

The table shows some characters in uppercase and others in lowercase. You
will no doubt usually enter programs in uppercase/graphic mode, so abbrevia-
tions will not appear in upper- and lowercase. Instead, the uppercase letters,
which must be typed with the SHIFT key, appear as graphic symbols. We use
uppercase and lowercase letters instead of uppercase and graphic symbols to
make the table easier to read. Just remember to press SHIFT when you type the
letters shown here in uppercase.

Crunching Programs

When you want a program to use less memory, there are several crunching tricks
you can use; they can be found on page 12.

TABLE 1-4. BASIC Abbreviations

The Elements of BASIC

Keyword Abbreviation Keyword Abbreviation
ABS aB GRAPHIC gR
AND aN GSHAPE gS
ASC aS HEADER heA
ATN aT HELP heL
AUTO aU HEXS$ hE
BACKUP bA IF —
BOX bO INPUT —
CHAR chA INPUT# iN
CHRS cH INSTR inS
CIRCLE cl INT —
CLOSE clo JOY jO
CLR cL KEY kE
CMD cM LEFT$ leF
COLLECT colL LEN —
COLOR coL LET 1IE
CONT cO LIST 1I
COPY coP LOAD 10
COS — LOCATE loC
DATA dA LOG —
DEC — LOOP 100
DEF dE MID$ ml
DELETE deL MONITOR mO
DIM dI NEW —
DIRECTORY diR NEXT nE
DLOAD dL NOT nO
DO — ON —
DRAW dR OPEN oP
DSAVE ds OR —
ELSE el PAINT pA
END eN PEEK pE
ERRS eR POKE pO
EXIT ex] POS —
EXP eX PRINT ?
FN — PRINT# pR
FOR fo PUDEF pU
FRE fR RCLR rC
GET gE RDOT rD
GO — READ rE
GOSUB goS REM —
GOTO g0 RENAME reN

11

12 The BASIC Language

TABLE 1-4. BASIC Abbreviations (continued)

Keyword Abbreviation Keyword Abbreviation
RENUMBER renU STEP stE
RESTORE reS STOP sT
RESUME resU STRS stR
RETURN reT SYS sY
RGR rG TAB(, tA
RIGHTS tl TAN —
RLUM rL THEN tH
RND N TO —
RUN rU TRAP tR
SAVE sA . TROFF troF
SCALE SCA TRON trO
SCNCLR sC UNTIL uN
SCRATCH scR USING usl
SGN sG USR uS
SIN sl VAL VA
SOUND sO VERIFY vE
SPC(sP VOL vO
SQR sQ WAIT wA
SSHAPE sS WHILE wH

® Use the lowest possible line numbers. References to large line numbers take up
more memory than those to small line numbers. When you are writing the
program, it is smart to leave gaps between line numbers so you can easily add
lines. Once the program is finished, however, you can use the RENUMBER
command to change all the line numbers to lower, closer-together numbers.

® Put multiple commands on aline. Separate commands on the same line with a
colon. There is no need to put spaces between the commands. Remember,
‘however, that each program line cannot exceed 88 characters in length.

® Delete spaces between characters in the program lines. Although spaces
improve readability, they take up memory. Blanks are never required, so omit
them if you need to.

® Remove REM statements if you need more room. Though useful for docu-
menting a program, they do use up memory.

® Use variables in place of long numbers and calculations that are repeated in a
program.

® Use arrays to hold groups of data. Arrays, which are explaihed elsewhere in
this chapter, handle large groups of data as an organized list. If an array

The Elements of BASIC 13

represents integers that never go outside the range -32767 to 32767, then it
should be defined as an integer array (with the 9% designation).

® Use DEF FN to define frequently used functions.

® Use READ and DATA commands to handle long lists of data whether or not
the data items are related. DATA commands can be placed together at the end
of the program and quickly accessed, data item by data item.

® Write subroutines to handle repeated tasks. Subroutines improve program
organization, and they can save memory by omitting needlessly repeated
commands.

Note: When BASIC searches for a program line to GOTO or GOSUB, it
starts at the beginning of the program and looks sequentially. To speed
execution, place DATA commands at the end of the program so that BASIC
does not have to search through them when looking for a program line. Place
frequently used subroutines near the beginning of the program so they are easy
for BASIC to find.

You can save typing time (though not execution time) by defining function
keys to print commands you use repeatedly. Function keys are easy to define, and
you will save a lot of time if you can just press a key instead of typing the
command. For example, if your program will have a lot of INPUT commands,
define a function key to print INPUT.

Defining a function key to print a command is also useful when you are
experimenting with a graphic-mode drawing. Define a key as one of the graphic
mode commands (e.g., KEY 3,”"GRAPHIC 2,1”) so you can quickly switch to the
drawing mode you want to use. The quickest way to get out of one of the drawing
modes is to commit a syntax error. Just type a letter and press RETURN. A
syntax error automatically cancels the current drawing mode and returns to
text/graphic mode. The drawing in the graphic mode is unaffected by the syntax
error. To get back toit, issue a GRAPHIC command without the ,1, which clears
the graphic mode screen.

BASIC Version 3.8 Commands, Functions, and System Variables

The rest of this chapter explains BASIC commands, functions, and reserved
system variables together in alphabetical order.

ABS Abbr. aB
ABS (number)

ABS is the numeric function that finds the absolute value of the number
enclosed in parentheses. The absolute value of a number is that number without

Parameter:

Examples:

Parameter:

Examples:

14 The BASIC Language

any sign, which means negative signs are removed from negative numbers. The
absolute value of 0 is 0.

any number, positive or negative, or a numeric expression

To display the absolute value for a number, put the ABS functionina PRINT
command.

PRINT ABS(35) Displays the absolute value of 35.
35

PRINT ABS(-35) Displays the absolute value of -35.
35 .

ASC Abbr. aS

ASC (string)

ASC is the numeric function that finds the character-string code for the first
character of the string inside parentheses. ASC is the opposite of the CHR$(x)
function, which finds the character for the character-string code number enclosed

" in parentheses.

any character or key in quotation marks, or a string expression

If you type more than one character in an ASC function, the computer prints
the code for only the first character in the string; all other characters are ignored.

To display the character-string code for a character, put the ASC functionina
PRINT command.

PRINT ASC("M") Displays the CHRS$ code for M.
v

PRINT ASC(””) Displays the CHRS code for the shifted CLEAR
147 key, which is printed as a reversed heart.

PRINT ASC("MAP") Displays the CHR$ code for only the first letter in
idle the string MAP.

ATN Abbr. aT

ATN (number)

ATN is the numeric function that finds the arctangent in radians of the number
enclosed in parentheses. For more information, see the Mathematical Calcula-
tions section of Chapter 3.

Parameter:

Examples:

Parameter:

BASIC Version 3.5 commahds, Functions, and System Variables 18

any numeric expression

PRINT ATN(1) Displays the arctangent of 1 in radians.
785398163

PRINT ATN(-)*180/m Displays the arctangent of -2 in degrees.
-63.4349488

AUTO Abbr. aU
AUTO increment

AUTO prints BASIC program line numbers automatically, which is useful
when you are writing a long program. After you turn on automatic line number-
ing, type the first line in your program (using any line number) and press
RETURN. Thereafter, AUTO prints the next line number as soon as you press
RETURN at the end of each line. The increment between the line numbers is
determined by the number you type in the AUTO command.

increment number

The increment number can be any positive number that does not exceed 63999,
which is the highest possible line number for a BASIC program. Entering a line
number greater than 63999 creates a syntax error.

Turning Off AUTO

Example:

You have to be in immediate mode to use the AUTO command. AUTO prints a
line number every time you press RETURN on a program line containing more
than the line number. Press RETURN on a line containing only the line number
to stop the line numbering. Then issue an AUTO.0 or AUTO with no number to
turn off automatic line numbering.

You can also issue a RUN command instead of AUTO 0 or AUTO, but note
that you must issue one of these commands to turn off automatic line numbering.

AUTO 20 Automatically numbers lines in increments of 20.

50 INPUT "DATE”; D Type any number for the first line number.

70 INPUT "TIME”; T AUTO adds the increment value (20) and prints
the next line number. '

Cautions:

16 The BASIC Language

BACKUP Abbr. bA
BACKUP Ddrive TO Ddrive, ON Uunit

Duphcates an entlre disk in a dual disk drive. BACKUP does not let you copy

just parts of disks or change the names of files or of the disk. Use the COPY
command to duplicate individual files or change file names. This command does
not work with single disk drives such as the 1541.

The disk you are copying is the “master” disk; you are copymg from the master

TO the blank disk.

1.

BACKUP headers the recipient disk before copying files from the master disk.
Since headering a disk erases all the information stored on the disk, do not
BACKUP onto adisk that contains files you want to keep. Useta blank disk or
a disk that contains information you no longer need.

. BACKUP does not affect files on the master disk. However, since BACKUP

does header the recipient disk, double check to be sure the master disk is in the
drive you name as the master drive in the BACKUP command. To avoid
accidentally backing up in the wrong direction, always put the master disk in
drive 0.

. BACKUP copies files indiscriminately—errors and all. For this reason, many

programmers prefer to use the COPY command or a copy utility program to
duplicate disks. If the master disk contains errors, do not use BACKUP.

: D disk drive number TO D disk drive number, U unit number
1.

Drive numbers are either 0 or 1. No other numbers are allowed. The first disk
drive number indicates which drive contains the master disk, whose contents
you are copying. You should always put the master disk in drive 0.

. TO is part of the command and must be included.

3. The second disk drive indicates which drive contains the blank disk onto which

you are copying the information from the master disk. Always put the recipient

- disk in drive 1.

. Unit number is an optional parameter that you should rarely if ever need. Use it

only if you have more than one dual disk drive connected to your computer,
and you are using a device other than unit 8 in the backup procedure. Youcan
precede the unit number with-ON, but ON is not required. The unit number
must be between 8 and 11.

Note: The drive and unit number parameters can be specified with a vari-
able or expression in parentheses.

Examples: BACKUP DO TO D1 Copies all the files on the disk in drive 0 onto

the disk in drive 1.

BASIC Version 3.5 Commands, Functions, and System Variables 17

BACKUP DO TO D1, U9 Copies the disk in drive 0 of unit 9 onto the disk
in drive 1 of unit 9.

BOX Abbr. bO |
BOX color source, corner coordinate, corner coordinate, angle, fill

Draws a rectangular shape in any of the four graphic drawing modes. You
supply the column, row coordinates of two opposite corners. You can include a
parameter to draw the rectangle at a tilted angle, and you can draw the box as an
outline or as a solid shape.

BOX can be executed only in a graphic mode. For more information on the
graphic modes and on the coordinates for the BOX command, see Chapter 4.

Parameter Values Default
Color source 0-3 1
First corner coordinate

Column coordinate 0-319 (high-res modes)

, 0-159 (multicolor modes)

Row coordinate 0-199
Second corner coordinate

Column Coordinate 0-319 (high-res modes) pixel cursor

0-159 (multicolor modes) '

Row coordinate . 0-199
Angle ' 0-360 0 (no angle)
Fill 0 (outline) or 1 (solid) 0

1. The color source indirectly selects the color for the drawing. There are five
color sources, but color source 4 (the border color) cannot be used in drawing
commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color
1 foreground color
2 multicolor mode extra color 1
3 multicolor mode extra color 2

The color source number you include in the BOX command tells the computer
to draw in the current color for that source. For example, if you select 1, the
computer draws the box in the current foreground color. If you want to use a

color other than one of the current source values, you must first use the COLOR
command to change one of the source values. Only sources 1 and 2 can be used to

Examples:

18 The BASIC Language

draw with more than one color on the same screen. Sources 0 and 3 are global

‘colors, which means that changing the colors for these sources affects all shapes

previously drawn with them.

If you want to use the default value (1, the current foreground color), you do
not have to type a number, but you must type acomma before the next parameter.

2. The first set of coordinates names the location of one corner of the box. The
second set names the location of the opposite corner of the box. The second set of
coordinates can be omitted. They will default to the pixel cursor. If you omit the
coordinates, type one comma instead. These are the only coordinates you give.

You can name either of the opposite sets of corners, and you can enter them in
any order (i.e., you do not have to enter the top corner first). If you name corners
with the same row or column coordinate, you will draw a line instead of a
rectangle.

3. After the box is drawn, the pixel cursor is at the location of the second set of
coordinates.

4. You can draw the box tilted at any angle from 0 to 360. For example, a
45-degree angle draws a diamond shape. The default value is 0, no tilting. The
tilting is done after the box is calculated. Therefore, the corners will not be at the
specified coordinates. If you omit this parameter and use the Fill parameter, you
must type a comma in place of the angle parameter.

5. You can draw the box as an outline or as a solid block. The default is 0,
which draws an outline. If you want to draw a solid block, select I as the value for
this parameter. No other values are legal. Since this is the last parameter, you do
not need to type a comma to take its place if you do not use this parameter.

BOX, 60,50, 240,150 Draws a rectangle in outline.

BOX, 80,50, 150,130, 45, 1 Draws a solid rectangle tilted at 45
degrees.

10 GRAPHICR,1 Enters split-screen high-resolution mode.

20 COLOR 1,54 Changes the color of source 1, thereby

indirectly changing the color used to
' draw the boxes.
30 FOR A=0 TO 360 STEP 10 Sets up a loop to increment the value of
the angle parameter in the BOX
‘ command.
40 BOX, 120,50, 200,100, A Draws a rectangle at the angle of A.
50 NEXT

CHAR Abbr. chA
CHAR color source, column coordinate, row coordinate, string, reverse mode

Displays a message at a specified screen location in any text or graphic mode.
You give the column and row coordinates of the message in the CHAR com-
mand. You can also print the message in reversed-image mode.

BASIC Version 3.5 Commands, Functions, and System Variables 19

CHAR is similar to the text-printing capabilities of PRINT, but CHAR also
lets you easily position the message on the screen. In addition, CHAR can display
messages in graphic modes, but PRINT cannot.

CHAR lets you print on top of, above, or below other messages. Because you
can position each CHAR message, you can place messages anywhere in relation
to each other.

CHAR has some slightly different features in the text and graphic modes.
When you use CHAR in‘a text mode only, you can print in flashing mode, and
you can include color changes and other special key commands that you can use
in PRINT commands.

Parameter Values Default
Color source 0-3 ' 1
Column coordinate 0-39

Row coordinate 0-24

Message String expression

Reverse mode Oorl 0 (off)

1. The color source indirectly selects the color for the drawing. There are five
color sources, but color source 4 (the border color) cannot be used with drawing
commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color (default value)
2 multicolor mode extra color 1
3

multicolor mode extra color 2

The color source number you include in the CHAR command tells the com-
puter to use the current color for that source to print the message. For example, if
you select 1, the computer prints the message in the current foreground color. If
you want to use a color other than one of the current source values, you must first
use the COLOR command to change one of the source values. Only sources 1 and
2 can be used to draw with more than one color on the same screen. Sources 0 and
3 are global (whole screen) colors.

If you want to use the default value (1, the current foreground color), you do
not have to type a number, but you must type a comma before the next parameter.

2. Even when you are displaying a message in a graphic mode, use the standard
text column (0-39) and row (0-24) numbers. You do not place CHAR messages
with the graphic mode 320-by-200 coordinates because you are placing whole
letters, not small dots. Be careful; this can be confusing.

3. The message must be in quotes, just as a PRINT command message You

Examples:

20 The BASIC Language

can also use a text-string variable as the message parameter. You can concatenate
strings to the message by adding a plus sign and the string. For example:
CHAR,2,2,"HELLO, "+N$+” HOW ARE YOU".

4. When you are using CHAR in a graphic mode, add a | as the final
parameter when you want to display the message in reversed image. The default is
0, no reversed image.

When you are using CHAR in a text mode, do not use the Reversed Mode
parameter. If you want to display the CHAR message in reversed image, use the

'CONTROL and RVS ON keys inside the quotes, just as you would in a PRINT

command. This method does NOT work in a graphic mode.

When you are using CHAR in a text mode, you can use flashing mode and
change character color by pressing CONTROL and FLASH ON, and CON-
TROL or & and the color key inside the quotes, just as you would in.a PRINT
command. You cannot use flashing mode in a graphic mode, and you cannot use
this method to change foreground color in a graphic mode.

You can include special key commands such-as the CLEAR key in a CHAR
command in a text mode but not in a graphic mode. If you include a special key
symbol in a graphic mode CHAR command, the computer prints the key’s
graphic symbol, but does not execute the key command. For example, if you
include a CLEAR key inside the CHAR quotes in a graphic mode, the computer
does not clear the screen, but it does print the heart symbol that stands for the
CLEAR key in quote mode.

If you use the CHAR command in a split screen mode, the message will be
printed on the graphic screen, not on the text screen. Even if the coordinates
indicate that the message should be placed on the text area of the screen (bottom
five lines), it will be plotted on the (unseen) graphic screen instead.

10 GRAPHIC 1,1

20 CIRCLE, 160,100, 60,50,,,,120

30 CHAR, 16,17, "ISOSCELES",1 Displays the message
ISOSCELES at column 16, row
17 in reverse.

40 CHAR, 16,18 "TRIANGLE” Displays TRIANGLE at column
NEW 16, row 18.
10 GRAPHIC 0,1 Switches to text/graphic mode.

20 INPUT "WHAT’'S YOUR NAME"; A$
30 CHAR, 10,0,"HELLO, “+A$

CHRS Abbr. cH
CHRS (number)

Finds the keyboard definition represented by the character code in paren-
theses. Each key on the keyboard—including key combinations such as SHIFT

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 21

and CLEAR—has a unique character-string value that can be called by its CHR$
code. You can use CHRS values to do anything to the screen output that you can
do by pressing a key, such as changing character colors, turning on reversed-
image mode, or deleting a character.

Printing the CHRS value to the screen has the same effect as pressing the key.
For example, PRINT CHRS$(77) is the same as PRINT “M”. This feature of
CHRS is especially useful when you want to defer the “pressing” of a key. For
example, in a BASIC program the only way to print a message that contains a
quotation mark is to use the CHRS code for the quotation mark:

PRINT “IBM’S MOTTO IS “;CHR$(34);"THINK”; CHR$(34)
IBM’S MOTTO IS “THINK"”

If you actually press the quotation mark key when you type the line, the
quotation mark opens or closes quote mode:

PRINT “IBM’S MOTTO IS “THINK"”
IBM’S MOTTO IS O

In the second PRINT command example, the computer assumes the quote
before THINK turns off quote mode. The computer also assumes that THINK is
avariable name, which is why the 0 is printed. The only way to print the quotation
mark as a character is to use its character code in a CHRS function.

The CHRS function is frequently used in function-key definitions to print a
quotation mark or “press” a RETURN key at the end of the key definition.

Appendix C lists all the CHRS values. Appendix D contains the standard
ASCII codes that are used by many computers for your reference. To find a
CHRS value, you can use the ASC function, which finds the code for any key.

CHRS codes are used in I/ O to devices other than the screen as well. The
printable characters are generally the same, but the control functions will be
different with a printer, for example, than with the screen.

PRINT CHR$(28); A; CHR$(129); B Changes the character color to
red, prints the value for A,
changes the character color to
orange, and prints B.

CIRCLE Abbr. cl
CIRCLE color source, center coordinates, x radius, y radius, start arc, end
arc, angle, increment

This graphic mode command draws circles as well as a variety of other shapes.
CIRCLE draws curved shapes such as arcs and ovals. CIRCLE also draws any

22 The BASIC Language

polygon with regular sides. For example, you can use CIRCLE to draw an
_ isosceles triangle. ‘

You can draw CIRCLE shapes tilted at any angle. If you want to draw solid
shapes, you must use the PAINT command to fill in the CIRCLE outline. Unlike
the BOX command, CIRCLE has no parameter for drawing a solid shape. See
Chapter 4 for more information on CIRCLE coordinates.

Parameter - Values Default
Color source 0-3 1
Center coordinates Current pixel-cursor location

Column coordinate
High-res modes 0-319

Multicolor 0-159

Row coordinate 0-199
Column radius

High-res modes 0-319

Multicolor modes 0-159
Row radius 0-199 Column radius value
Arc starting angle ~ 0-360 0
Arc ending angle 0-360 360
Angle of tilt ' 0-360 0
Segment size 0-255 2

1. The color source indirectly selects the color for the drawing. There are five
color sources, but color source 4 (the border color) cannot be used in drawing
commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color
1 foreground color
2 multicolor mode extra color 1

3 multicolor mode extra color 2

The color source number you include in the CIRCLE command tells the
computer to draw in the current color for that source. For example, if you select
1, the computer draws the shape in the current foreground color. If you want to
use a color other than one of the current source values, you must first use the
COLOR command to change one of the source values. Only sources 1 and 2 can
be used to draw with more than one color on the same screen. Sources 0 and 3 are
global (whole screen) colors.

If you want to use the default value (1, the current foreground color), you do
not have to type a number, but you must type acomma before the next parameter.

Examples:

BASIC Version 3.5 Commands, Functions, and System Variables a3

2. The first coordinates name the center of the shape. The default center is the
current location of the pixel cursor.

3. Horizontal radius is the distance from the center of the shape to the left and
right sides of the shape.

4. Vertical radius is the distance from the center of the shape to the top and
bottom of the shape. Because vertical dots on the high-resolution graphic screen
are slightly farther apart than horizontal dots are, when the vertical and horizon-
tal radii have the same value, the shape drawn is an oval, not a circle. To draw a
circle, the vertical radius must be scaled to the horizontal radius (e.g., 50 horizon-
tal, 47 vertical). For multicolor coordinates, 25 horizontal is about 47 vertical.

5. Use the starting angle only when you want to draw an arc. Zero degrees is at
the top of the screen; 180 is at the bottom; 90 is to the right; and 270 is to the left.

6. The ending angle for an arc defaults to 360 if not specified.

7. Youcandraw ashape tilted at an angle from 0 to 360 degrees. The default is
0, which is no tilt.

8. You choose the shape of the CIRCLE drawing by choosing the number of
degrees between the segments in the drawing. The default number of degrees
between shape segments is 2 degrees, which draws a circle.

When you draw a circle on the screen, you are actually drawing a 180-sided
polygon (360 divided by 2, the default segment value). The larger the increment of
degrees between segments, the more angular the drawing. For example, a seg-
ment value of 120 draws a triangle, not a circle.

To draw a polygon with the CIRCLE command, divide 360 (the total number
of degrees in a real circle) by the number of sides you want the shape to have. For
example, to draw a hexagon, divide 360 by 6. Then use the result, 60, as the
segment parameter.

Note: Although the segment-size parameter can have a value of up to 255, any
value between 180 and 255 draws a straight line. '

10 GRAPHIC 2,1
20 CIRCLE, 140,80, 90,80, 180,320 Draws an arc.

30 CIRCLE, 160,100, 60,50,,,,90 Draws a diamond.

40 CIRCLE, 160,100, 60,50,,90,120 Draws a triangle rotated
90 degrees.

50 CIRCLE, 160,75, 72,60 Draws a circle.

CLOSE Abbr. clO

CLOSE file number

Closes access to a peripheral device or a data file on tape or disk. CLOSE is
paired with the OPEN command, which gives access to a data file or peripheral
device. You must CLOSE the file or device with the same logical file number you
used to OPEN it.

Be sure to CLOSE files and devices when you finish accessing them; leaving

Parameter:

Example:

Parameters:

Examples:

24 The BASIC Language

them OPEN leads to errors. Note that you can have only 10 files OPENed at a
time.

logical file number

The logical file number must be the same number you used to OPEN the file.
The logical file number has no relation to the file itself; you can use any number
between 1 and 255 as long as you use the same number in commands, such as
OPEN and CLOSE, that refer to the file.

10 OPEN 4,4,7 Opens access to the printer.

20 INPUT X$,Y$

30 PRINT #4,X$,Y$ Prints the values input for X$ and YS$.
40 CLOSE 4 Closes access to the printer.

CLR Abbr. cL

Clears the values of all variables without otherwise affecting the current
program. All numeric variables are reset to zero, and all text-string variables are

- reset to a null string.

The CLR command is automatically executed when you issue a NEW or RUN
command. CLR is also executed when you edit a program, which is why you
cannot use CONT to resume program execution after you edit the program.

CMD Abbr. cM
CMD file number, output list

Interrupts the normal flow of output to the screen and sends the output to a
different device, such as the printer or a data file. The device or file must first be
accessed by an OPEN command.

logical file number, list of output items

1. The logical file number must be the same number you used in the OPEN
command to access the file.

2. The list of output items is optional. It can include numeric and string expres-
sions separated with commas or semicolons, just as a PRINT command.

10 OPEN 4,4 Opens access to the printer.
20 CMD 4,”THIS IS MY PROGRAM” Directs output to printer and
_ prints a heading.
30 LIST ~~ Lists program to printer under
heading. ,

Parameters:

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 28

40 PRINT# 4:CLOSE 4 Turns off the CMD command
and closes access to the printer.

The following sequence can be used in immediate mode to LIST the current
program to the printer:

OPEN4,4:CMD4:LIST
PRINT#4:CLOSE4

COLLECT Abbr. colL
COLLECT Ddrive, ON Uunit

Cleans up a disk by clearing files that were improperly closed and are inacces-
sible. COLLECT removes improperly closed files from a disk and its directory so
you can store files in disk space that was rendered unusable.

Note: Never use the COLLECT command on disks that contain information

written with direct-access commands (see Chapter 6).

drive number, U unit number

1. Drive numbers are either 0 or 1. No other numbers are allowed.

2. Unit number is an optional parameter. Use it only if you have more than one
disk drive connected to your computer, and you are using a device other than unit
8 inthe COLLECT procedure. You must precede the unit number with U, and the
unit number must be between 8 and 11. You can type ON before U, but ON is not
required.

Note: The drive and unit number parameters can be specified with a variable
or expression in parentheses.

COLLECT DO Gets rid of all inaccessible files on drive 0.

COLOR Abbr. coL
COLOR color source, color, luminance

Lets you change the color of the screen, the characters, the border, and the
multicolor sources. You can choose any of the 16 basic colors, and one of 8 shades
of any color except black, which has no shades.

The COLOR command lets you indirectly choose the color to be used in
drawing commands. Drawing commands such as CIRCLE do not have parame-
ters for selecting color. You must first change the color with a COLOR command.

You can change character color with the color keys on the keyboard, which are
pressed with the @ or CONTROL keys. This method of selecting a character
color has two shortcomings: you cannot select a luminance level, and the color
change does not affect the value in the foreground-color source (source 1). This

26 The BASIC Language

means that although the new color affects the characters you type, it does not
change the color of the drawings you do in graphic modes.

Parameter Values Default

Screen color source number ' 0-4 None

Color number 1-16 None
Luminance value 0-7 7 (lightest shade)

1. There are five color sources whose color you can change with the COLOR
command:

screen background color

foreground color

0
1
2 multicolor mode extra color 1
3 multicolor mode extra color 2
4

screen border color

You cannot use the border color (source 4) in drawing commands. Color
source 1, foreground color, determines the default color of characters and graph-
ics on the screen. Changing the character color with the color keys changes only
the color of characters printed in text mode. Changing the foreground color
(source 1) changes both the default graphics drawing color and the color of
characters printed in text mode.

2. You can choose any of the colors listed on the color keys by using the
following numbers:

1 = black 9 = orange

2 = white 10 = brown

3 =red 11 = yellow-green
4 = cyan 12 = pink

5 = purple 13 = blue-green

6 = green 14 = light blue

7 = medium blue 15 = dark blue

8 = yellow 16 = light green

3. You can choose one of eight shades of a color by adding a luminance level.
To choose the darkest shade, use 0; the shades are progressively lighter, 7 being
the brightest.

Examples:

BASIC Version 3.5 Commands, Functions, and System Variables av

The luminance setting is optional. The default value is 7, which selects the
brightest shade of the color. When you use the color keys on the keyboard to
change the character color, a preset luminance value is automatically used.

Black has no luminance values, although it is not an error to include this
parameter when you are selecting black. The luminance settings 0 through 6 for
white are shades of gray.

COLOR O, 12,3 Changes the screen background to medium pink.
COLOR 1, 3,0 Changes the foreground color to dark red.

CONT Abbr. cO

Lets you restart a BASIC program after you have interrupted its execution
with the STOP key, the STOP command, or an END command in a program.
The program resumes at the point in the program where execution was inter-
rupted, and all variables retain their most-recent values.

You cannot resume execution with CONT if any of the following events have
occurred between STOP and CONT:

® You change or add lines to the program.

® You move the cursor to a program line and press RETURN with or without
changing the line.

® The program stopped because of an error (in which case an error message
would have appeared on the screen).

® You do anything to cause an error after suspending the program.
® You execute a CLR command.

COPY Abbr. coP
COPY Ddrive, old file name TO Ddrive, new file name, ON Uunit

Makes a duplicate of a disk file or an entire disk. On a single disk drive, such as
the 1541, you can copy afile only onto the same disk. You must give a copy on the
same disk a different name from the original file. The COPY procedure does not
affect the master file. In addition, you can copy from one drive to another if you
have a dual disk drive. You cannot use the COPY command to copy from one
single disk drive to another with different unit (device) numbers.

Unlike the BACKUP command, COPY does not header the recipient disk
before duplicating the file(s). The advantage of this difference is that you can use
COPY to add files to a disk that already contains files you want to keep. The only
drawback is that you must take care not to COPY a group of files onto a disk that
does not have enough room. Avoid this problem by checking the directories of
both disks before you issue the COPY command. A 1541 disk can hold up to 664
blocks (256 bytes each) of information.

Examples:

28 The BASIC Language

Also unlike the BACKUP command, COPY does not duplicate disk errorsina
file. If a file you are COPYing contains a disk error, the file is not copied. The
advantage of this difference is that you do not duplicate inaccessible files.

Parameter Values Default
drive number, Oorl : 0
"master file” any file name in quotes

TO drive number, Oorl 0
"receiving file”, any file name in quotes

U unit number 8-11 8

1. Bothdrive numbers can be omitted if you are making a duplicate of a file on
the same disk. .

2. The Master File is the name of the file you want to copy. The name must be
in quotes.

3. TO is a necessary part of the COPY command. The drive number can be
omitted, but TO cannot.

4. The Receiving File is the name of the file that will become the copy of the
master file. The receiving file name can be the same as the master file, which is
likely when you are copying from one drive to another. The name must be in
quotes. The receiving file name must be different if you are copying a file onto the
same disk.

5. Unit number is an optional parameter. Use it only if you have more than
one disk drive connected to your computer and you are using a device other
than unit 8 in the COPY procedure. You must precede the unit number with U,
and the unit number must be between 8 and 11. You can type ON before the unit
number, but ON is not required. Most people will never need the unit number
option.

Note: The drive and unit number parameters and the file names can be
specified with a variable or expression in parentheses.

COPY DO, "ADDR" TO D1, ”ADDR” Copies the file ADDR from the
disk in drive 0 to the disk in drive 1.

COPY DO TO D1 Copies all the files on the disk in
- drive 0 to the disk in drive 1.
COPY "MEMO1” TO "MEMOR" Copies the file MEMOI onto the

same disk, renaming the file
MEMO?2. This does not affect
MEMOI.

Parameter:
Examples:

Parameter:

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 29

COS Abbr. none
COS (number)

COS is the numeric function that finds the cosine of the angle in parentheses.
The angle must be expressed in radians. For more information, see the Mathe-
matical Calculations section of Chapter 3.

any number or numeric expression

PRINT COS(w) Prints the cosine of an angle of 7 radians (180
-1 degrees).

PRINT COS(30*7/180) Prints the cosine of an angle of 30 degrees.
.866025404

DATA Abbr. dA -
DATA data list

Contains a list of values that are available for assignment to variables by
READ commands. DATA commands are complements to READ commands;
neither command works without the other.

DATA items can be either numbers or text. Text data does not need to be
enclosed in quotes unless it includes an embedded comma or colon, although the
text items are treated as if they were in quotes. Since DATA commands always
contain constant values, not variable names, the computer assumes that any
nonnumeric DATA item is text.

DATA commands can contain any number of values as long as the list is no
longer than 88 characters on the screen. READ commands can get data from
DATA commands anywhere in the program.

You must have enough DATA values in a program to assign a value to every
variable in the READ commands that are executed in the program. If there are
not enough DATA values, the program is aborted and the error message OUT

- OF DATA is displayed.

When DATA items are READ, the computer keeps track of the last value read
by marking its place with a data pointer. You canreREAD DATA items by using
the RESTORE command, which resets the data pointer to the beginning of a
DATA command.

list of data values separated by commas

DATA items must be separated by commas. Text items do not have to be in
quotes unless they contain commas or colons.

10 DATA 1,2,3,4 ' .
20 READ AB READ:s the first two values from
30 PRINT "A =";A;"B =";B the DATA list.

Example:

Parameters:

30 The BASIC Language

40 READC,D READs the next two values

50 PRINT “C =";C;"D =";D from the DATA list.

60 RESTORE Resets the data pointer to the
beginning of the DATA list.

70 READ X\Y,Z, READ:s the first three values

90 PRINT "X =";X;"Y = ",X;"2 =";2 from the RESTOREd DATA
list.

RUN

A=1B=2

C=3D=4

X=1Y=R2=3

DEC Abbr. none

DEC (string)

Finds the decimal (base 10) value of a hexadecimal base 16) number. Hexa-
decimal base digits are 0 through F, which equals decimal 15. The hexadecimal
number, which must be a string expression, must be between 0 and hexadecimal
value SFFFF, which is equal to decimal 65535. (The dollar sign preceding a
number is used to indicate that the number is hexadecimal but should NOT be
included in the string sent to the DEC function.) The DEC function returns the
unsigned value of the hexadecimal number. To get the 16-bit two’s complement,
X, of a hexadecimal number, X§, use

X = DEC(X$)+(DEC(X$)>B2767)*65536

PRINT DEC(”1E"); DEC(”10"); DEC("A")
30 16 10

DEF FN Abbr. dE fn
DEF FN name (variable) = function

Defines a calculation as a function. DEF FN saves time and errors by sparing
you from having to reenter a calculation you will use more than once in a
program. After the function is defined as a formula, you can use it to solve a
specific problem. To do so, call the function and supply the value you want the
formula to solve, with FN name (value).

function name (variable) = calculation

1. The function name is any legal variable name. When you want to use the
function later in the program, you give FN followed by the function name.
2. The (variable)is replaced by a value when you call the function you defined.

Example:

Examples:

BASIC Version 3.5 Commands, Functions, and System Variables 31

This replacement is how you use the generic formula you defined in the DEF FN
to solve a specific calculation.

3. The calculation must follow the rules for calculations.

Note: If BASIC RAM is moved by a GRAPHIC command after defining a
function, the function may not be evaluated properly. Enter (and immediately
leave if necessary) the graphic mode before you define the function. ‘

10 DEF FNX(Y) =INT(A*2+7Y) Defines the formula for function X.

15 INPUT A ‘

20 PRINT FNX(35.2); FNX(19.9) Calls function X to use its formula
to solve for 35.2 and then for 19.9,

RUN which replace Y in the function
?5 formula.

45 29
DELETE Abbr. deL

DELETE line number-line number

Deletes BASIC program lines. You can issue this command only in immediate
mode, not in a BASIC program.

line number(s)

You can delete one line at a time or a group of lines. To delete one line, just
enter the line number after the word DELETE. To delete a group of lines, enter
DELETE, then the first line number, a dash, and the final line number.

You can also delete all the lines from the beginning of the program up to a
certain line by entering DELETE followed by a dash and the last line you want to
delete. To delete all the lines from a certain line to the end of the program, enter
DELETE, the first line you want to delete and a dash.

DELETE 75 Deletes line 75.

DELETE 150-250 Deletes lines 150 through (and including) 250.

DELETE -90 Deletes all lines up to and including 90.

DELETE 140- Deletes line 140 and all following lines to the end of
the program.

DIM Abbr. dI

DIM array name (subscripts), array name (subscripts), etc.

Defines an array, which is also called a matrix. An array is a table of related
values that you can use as a unit or as individual data items. You can refer to any

Examples:

32 The BASIC Language

element of the array by giving the array variable name and the subscripts in the
array where the element is located.

The DIM command names the array and defines the number of elements in the
array. An array can have one, two, or more dimensions. If you use an array
element without first DIMensioning the array, the computer gives the array the
default number of elements (11).

You cannot change the dimensions of an array after you have DIMensioned it,
or after you have accepted the default dimensions. If you DIM the array after you
have used it, or try to reDIM the array, the program is aborted and the error
message REDIM’D ARRAY is displayed.

The first element in any dimension of an array is numbered 0, not 1. This means
that an array dimensioned as (5,3) is actually 6 by 4. When you figure the number

‘of elements in an array, add 1 to each dimension, then multiply the results of the

additions. For example, if the array is dimensioned DIM K(2,4), the array
contains (2 + 1) % (4 + 1) ='15 elements.

array name (subscripts), array name (subscripts), etc.

The default number of elements is 11 (0-10).

1. The array name is a variable that follows standard variable rules. Arrays
containing text elements must have text-string variable names (e.g., A$). Arrays
containing numeric elements must have a numeric variable name.

2. The subscripts set the number of elements in each dimension of the array.

You can define more than one array in a DIM command. Separate multiple
array dimensions with a comma.

You can use arrays with more than two dimensions by supplying additional
subscripts in the dimension command. For example, to DIMension a four-
dimensional array, you can use DIM A(2,2,3,2).

10 DIM G(9) Defines a one-dimensional array with ten
’ elements.
20 DIM G$(3,8) Defines a two-dimensional text array with 24 ele-
ments (3+1 rows times 5+1 columns).
30 DIM H(R,3,4) Defines a three-dimensional array with 60 elements

(2+1 times 3+1 times 4+1).

90 PRINT G#$(2,2) Prints the element at row 2, column 2.

100 INPUT A(3) INPUTs a value for element 3 in array A. Since
array A has not been defined in a DIM command,
it is given the default number of elements (11).

DIRECTORY Abbr. diR
DIRECTORY Ddrive, Uunit, file name

Displays the following information about the contents of a disk:

Parameters:

Examples:

BASIC Version 3.8 Commands, Functions, and System Variables 33

® Names of all files on the disk
® The length of each file in blocks

® Howmuch storage space remains on the disk

Press CONTROL and S to suspend the display, and any key to resume display.
Hold down & to slow the display.

Each 1541 disk can contain up to 664 blocks of information. You should check
to see how many blocks remain free before you COPY files onto a disk. You
should also check before you save a file if you think the disk is nearly full.

D drive number, U unit number, “file names or prefixes”

1. Drive numbers are either 0 or 1. No other numbers are allowed. The drive
number must be preceded by D (e.g., D0). You do not need this parameter if you
are using a single drive such as the 1541, or if you are accessing drive 0 of a dual
drive.

2. U unit number is an optional parameter. Use it only if you have more than
one disk drive connected to your computer and you are accessing a device other

- than unit 8. You must precede the unit number with U. You can also type ON

before U and the unit number, but ON is not required.

3. You can display a partial disk directory by specifying a file name. It is
especially useful to use wild cards in the file name. For example, after you type
DIRECTORY, add, in quotes, the beginning letters of the file names you want to
list and then the * sign. The * sign stands for all the other letters in the file names
you want to list. The command looks like this: DIRECTORY ”beginning
letters*”.

You can use the question mark as a wild card to stand for any single character
in a file name.

Note: The drive and unit number parameters and the file name can be speci-
fied with a variable or expression in parentheses.

DIRECTORY - Displays the complete list of files on the disk
currently in the disk drive.
DIRECTORY D1 Displays the directory for the disk in drive 1

of a dual drive.

DIRECTORY U9, “"LET*” Displays a list of files whose names begin
with the characters LET. Other files on the
disk in unit 9 are not listed.

DIRECTORY "TEST?” Displays the files whose names are TEST and

: one additional character (e.g., TESTI,
TESTX).

Parameters:

Examples:

34 The BASIC Language

DLOAD . Abbr. dL
DLOAD file name, Ddrive, Uunit

Loads a disk program into meniory. You cannot use DLOAD to load pro-
grams from tape.

“file name”, D drive number, U unit number

1. You must include the name of the file. Enter the name in quotes. You can
use a variable name in place of the file name, but the variable must have a value,
and it must be in parentheses (not in quotes). The only time this is likely to be
useful is when you load a program from within another program.

2. Drive numbers are either 0 or 1. No other numbers are allowed. The default
value is 0. You do not need this parameter if you are loading from a single disk
drive.

3. Unit number is an optional parameter. Use it only if you have more than one
disk drive connected to your computer and you are using a device other than unit
8 in the loading procedure. You must precede the unit number with U. You can
also type ON before U and the unit number, but ON is not required.

Note: The drive and unit number parameters and the file name can be speci-
fied with a variable or expression in parentheses.

Note: Only program-type files can be DLOADed.

Note: In program mode, a RUN command (with no CLR) is automatically
issued following a DLOAD operation. This makes it possible to chain programs.

DLOAD "CIRCLES” Loads file CIRCLES from disk.
90 DLOAD (X$) Loads a file whose name is the current value of X§.
. File X$ is loaded during the execution of the
current program.

DO ... UNTIL/WHILE/EXIT . ..LOOP Abbrs. do/uN/wH.exI/loO
DO UNTIL logical value WHILE logical value

commands

EXIT

commands

LOOP UNTIL logical value WHILE logical value

Repeats execution of the commands between DO and LOOP. The DO loop
cannot stop itself unless you add commands or clauses that set conditions for
terminating the loop. UNTIL, WHILE, and EXIT are optional clauses that can
be included to terminate a DO loop. '

UNTIL and WHILE clauses, which control the number of loop executions,
contain conditional formulas that are evaluated each time the loop repeats. EXIT
lets you abort the loop. '

Example:

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 38

Parameters
Required Optional
DO UNTIL conditional formula

WHILE conditional formula

Commands to be executed by the loop
EXIT
LOOP. _ UNTIL conditional formula

WHILE conditional formula

1. The UNTIL clause usually contains at least one variable that is compared
with a value. The condition of this comparison is checked each time the DO loop
executes. The loop continues repeating until the condition(s) is (are) met. Pro-
gram control then passes to the command after the LOOP command.

You can set multiple conditions by linking them with AND or OR (e.g.,
UNTIL X =5OR Y > 10).

20 DO UNTILX =10 This DO loop executes until X equals 10. When
30 PRINT X this condition is met, the loop ends. '
40 X=X+2

50 LOOP

2. The WHILE clause usually contains at least one variable that is compared
with a value. The condition of this comparison is checked each time the DO loop
executes. The loop continues repeating while the condition(s) is (are) met. Pro-
gram control then passes to the command after the LOOP command.

You can set multiple conditions by linking them with AND or OR (e.g.,
WHILE X =5 OR Y > 10).

20 DO WHILE X <10 This DO loop executes until X is greater than or

30 PRINT X equal to 10. When this condition occurs, the loop
40 X=X +2 ends.
50 LOOP ’

Notes: The difference between UNTIL and WHILE is that UNTIL conditions
start off not being met; the loop continues until they are. WHILE conditions start
off being met; the loop continues until they are not met.

The conditions in UNTIL and WHILE commands are always either true (met)
or false (not met). If you use more than one condition, join them with AND or
OR. If you use AND, both conditions must be met; if you use OR, only one
condition has to be met. |

Both DO and LOOP can have UNTIL conditions or WHILE conditions, but
not both. '

Example:

36 The BASIC Language

You can have a conditional clause (WHILE or UNTIL) in both the DO and
LOOP commands in one loop.

If you omit both UNTIL and WHILE clauses in the DO loop, the loop is an
infinite loop: it continues executing without stopping. You must interrupt the
program with the STOP key to terminate the loop. ,

3. EXIT lets you leave the loop before the UNTIL or WHILE conditions end
the loop. You can, for example, use EXIT to check for unwanted values and end a
loop if a particular value is encountered. After an EXIT command, program
execution passes to the line following the LOOP command.

Note: Always use EXIT (never GOTO) to leave a loop prematurely.

5 DATA YES, NO, YES, NO, END Lists DATA values.

10 DO WHILE X < 50 Begins a loop that runs as long as
X is less than 50.

20 X=X+1 Increments the counter for the
WHILE clause.

30 READ ANS$ Reads data from line 5.

40 IF ANS$="END” THEN EXIT Aborts the loop if ANS$ = END.

50 LOOP Sends the loop back to DO.

NEW Clears the previous program.

10 DO:PRINT "HALT!" Begins a DO loop.

20 X=X+1 Adds 1 to X each time the loop

o executes.
30 IF X'= 25 THEN EXIT Aborts the loop when X = 25.
40 LOOP Sends the loop back to DO.

4. LOOP works with DO to set conditions for a repeated sequence of program
lines. LOOP works for DO as NEXT does for FOR: it marks the end of the loop
and sends execution back to the beginning of the loop.

If youdo not include an UNTIL or WHILE clause with the DO command, you
can add one here. The UNTIL and WHILE commands can appear with either the
DO command or the LOOP command, or both.

DRAW Abbr. dR
DRAW color source, coordinates TO coordinates TO coordinates etc.

Draws dots, lines, and any angled shape. DRAW can be used only in one of the
graphic modes. Though you can draw any polygon with DRAW, it is sometimes
simpler to use CIRCLE to draw polygons with regular-length sides. See Chapter
4 for more information on DRAW coordinates.

BASIC Version 3.5 Commands, Functions, and System Variables 37

Parameter Values Default
Color source 0-3 1
Coordinates Pixel cursor
Column coordinate
High-res modes 0-319
Multicolor modes 0-159
Row coordinate 0-199

* TO coordinates
Column coordinate

High-res modes 0-319
Multicolor modes 0-159
Row coordinate 0-199

TO column, row, etc.

1. The color source indirectly selects the color for the drawing. There are five
color sources, but color source 4 (the border color) cannot be used in drawing
commands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color

2 multicolor mode extra color 1
3

multicolor mode extra color 2

The color-source number you include in the DRAW command tells the com-
puter to draw in the current color for that source. For example, if you select 1, the
computer draws the shape in the current foreground color. If you want to use a
color other than one of the current source values, you must first use the COLOR
command to change one of the source values. Only sources 1 and 2 can be used to
draw with more than one color on the same screen. Sources 0 and 3 are global
(whole screen) colors. -

If you want to use the default value (1, the current foreground color), you do
not have to type a number, but you must type acomma before the next parameter.

2. The first coordinates name the starting point of the drawing. If you omit this
parameter, the current location of the pixel cursor is used as the starting point. If
you omit the first coordinates, no placeholder comma is required.

3. TOis arequired part of the DRAW command unless you are just drawing a
- dot. : .

4. The second and subsequent coordinates name the ending points of the line
segments. You can add more than one TO clause to draw complex designs. If you

Examples:

Parameters:

38 The BASIC Language

do, the ending point of the first line segment becomes the starting point of the
next line segment, etc.

5 GRAPHIC 1,1
10 DRAW, 30,25 TO 289,150 Draws a line from column 30,
row 25 to column 289, row 150.
20 DRAW, 160,25 TO 310,80 TO Draws a four-sided open shape.
240,100 TO 160,100 TO 80,50

30 DRAW TO 319,50 Draws a line from the current
: pixel-cursor location to column
319, row 50.
DS Abbr. none

Youcan PRINT DS to display a reading of the disk drive error number, or you
can examine DS in a program when you need to know the drive status. Use DS
with DSS$ to find out why the red error light on the disk drive is blinking after a
disk operation such as DLOAD. If no error occurred, DS is zero.

DSS$ Abbr. none

You can print DSS$ to display a message explaining the drive status. Use DS$
with DS to find out why the red error light on the disk drive is blinking after a disk
operation such as DLOAD. The error messages are listed in Appendix A.

DSAVE Abbr. dS
DSAVE file name, Ddrive, Uunit"

Stores the current program onto a disk. You cannot use DSAVE to store
programs onto cassette tape.

“file name”, D drive number, U unit number

1. You must include the name of the file. Enter the name in quotes. You can
use a variable name in place of the file name, but the variable must have a value,
and it must be in parentheses (not in quotes).

2. Drive numbers are either 0 or 1. No other numbers are allowed. The default
value is 0. You do not need this parameter if you are storing onto a single disk
drive.

3. Unit number is an optional parameter. Use it only if you have more than one
disk drive connected to your computer and you are using a device other than unit
8 in the loading procedure. You must precede the unit number with U. You can
also type ON before U and the unit number, but ON is not required.

Note: The drive and unit number parameters and the file name can be speci-
fied with a variable or expression in parentheses.

BASIC Version 3.8 Commands, Functions, and System Variables 39

Examples: DSAVE “BOXES” Stores the program BOXES onto the disk.

Example:

90 DSAVE (A$),TU9 Stores a file onto the disk in drive unit 9. The
name of the file is the current value of A$. The
program is saved during execution.

EL Abbr. none

Determines the line number of the last BASIC error that occurred in a
program. Use PRINT EL to display the line number. The reserved variable EL is
often used in conjunction with the TRAP command, which isolates errors
without interrupting program execution.

ELSE Abbr. eL

An optional clause youcanadd toan IF ... THEN. .. ELSE command. See
IF... THEN...ELSE.

END Abbr. eN

Ends a program with no message. You need to end a program with the END
command when subroutines or trap routines follow the body of the program.
You can also use END somewhere in the body of the program to terminate the
program if some condition is met.

50 IF A$="STOP” THEN END Ends the program if A$ equals STOP.
ER Abbr. none

Determines the error number of the last BASIC error that occurred in a
program. Use PRINT ER to display the error number. The reserved variable ER
is often used in conjunction with the TRAP command, which isolates errors
without interrupting program execution. The BASIC errors are listed in Appen-
dix A.

ERRS Abbr. eR
ERRS (number)

Returns the error message describing the BASIC error number in parentheses.
The function ERRS$ is often used in conjunction with the TRAP command, which
isolates errors without interrupting program execution. To display the error
message for the most recent error in the program, type PRINT ERRS$(ER).

Parameter: a numeric expression with value 1-36

The BASIC error messages are listed in Appendix A.

Example:

Parameters:

40 The BASIC Language
EXIT Abbr. exI

Terminates a DO ... LOOP conditional command sequence. You cannot use
EXIT with other commands, including IF ... THEN ... ELSE sequences. See
DO.

EXP Abbr. eX
EXP (number)

Numeric function that finds the value of the mathematical constant e (approx-
imately 2.71828183) raised to the power in parentheses. To find exponentials of
other numbers, use the up arrow symbol.

any numeric expression

PRINT EXP(-1) Displays the reciprocal of e.
367879441

FOR...TO...STEP...NEXT Abbrs. fO/to/stE/nE
FOR variable = start value TO end value STEP increment
commands

NEXT variable, variable, etc.

Creates a loop to repeatedly execute all commands between the FOR com-
mand and the NEXT command. The loop repeats until the counter variable in the
FOR command equals or exceeds the value of the ending point.

If you omit the optional STEP command, the FOR counter is incremented by 1
each time the loop executes. You can use STEP to increment the counter by any
number. For example, you can use a STEP increment of 25 to draw a shape
repeatedly, each time tilted 25 degrees more. You can also use STEP to count
backwards by specifying a negative number.

FOR counter variable = starting point TO ending point STEP increment
commands '

NEXT counter variable

1. The FOR command contains a variable whose value is updated each time
the loop is executed.

The FOR command also contains the startlng and ending points for the
number of times the loop will execute. The starting and ending points can have
any value, including variables. If the starting point is higher than the ending
point, you normally include a negative STEP value.

2. The STEP clause, which is optional, tells the computer how much to add to
the current value of the counter each time the NEXT command sends execution
back to the FOR command. The default value is 1.

Examples:

BASIC Version 3.5 Commands, Functions, and System Variables 41

A negative STEP value decreases the value of the counter variable each time
the loop is executed. (Remember that adding a negative value is like subtracting.)

3. The commands that are to be repeated during loop execution appear
between the FOR command and the NEXT command.

4. The NEXT command tells the computer to go back to the FOR command.
When the FOR command is reached again, the STEP value is added to the value
of the counter. When the counter passes the ending point, the loop terminates.
Never leave a FOR . . . NEXT loop with a GOTO. You can always leave when
NEXT is executed by setting the loop variable equal to its ending point.

Note: AFOR ... NEXT loop is always executed once. The counter variable is
updated before leaving the loop.

The NEXT command can contain the FOR counter variable, but it is not
required. If you are nesting loops, use the counter variable in the NEXT com-
mands to avoid errors. The NEXT command can also contain a number of
counter variables for nested loops. The variables must be listed starting with the
innermost loop variable and ending with the outermost loop variable, therefore,
nesting rules are followed.

Nesting Multiple FOR ... NEXT Loops Youcannestupto 10 FOR ... NEXT
loops. Note the following when you nest loops:

® The inner loop becomes part of the outer loop.

® The inner loop must start and end between the beginning and ending of the
outer loop.

® The inner loop executes a full cycle from starting to ending points each time the
outer loop executes once.

Chapter 3 contains more information on using loops in BASIC programs.

10 FOR X = 10 TO 50 STEP 15
20 PRINT "X ="; X

30 NEXT ,

40 PRINT “AT THE END OF THE LOOP, X =";X

RUN

X=10

X =25

X=40

AT THE END OF THE LOOP, X = 55

NEW

Parameter:

Example:

42 The BASIC Language

10 FORY=1TO3

20 FORZ=6TO1lSTEP-R
30 PRINT "Z ="; Z;

40 PRINT"Y =";Y

50 NEXT Z: NEXTY This line could also read NEXT Z,Y.

RUN

Z2=6 Y-=1 While Y, which is part of the outer loop, executes
Z=4 Y-=1 once, Z, from the inner loop, executes all three times.
Z=2 Y-=1 When Y makes its second execution, Z repeats
Z=6 Y=2 another full set, and so on.

Z=4 Y=2

Z2=2 Y=2

Z=6 Y=3

Z=4 Y-=3

Z=2 Y=3

FRE Abbr. fR

FRE (number)

Examines the number of available bytes of RAM. Use PRINT FRE(0) to
display the amount of memory available. The FRE function uses a dummy
argument, which means that the number in parentheses is meaningless. You have
to include the parameter anyway; just type FRE(0).

- GET Abbr. gE

GET input list

Like INPUT, GET accepts input from the keyboard during program execu-
tion. GET, however, accepts only a single character at a time as data entry. In
addition, GET does not wait for input, but returns a null (empty) string if no key
is pressed. This allows you to check repeatedly for keyboard entry while other
operations continue. To force the computer to wait for input, use the GETKEY
command.

variable(s)

The variable is nearly always a string variable. It stands for the key to be typed
in response to the GET command. Use of a numeric variable allows only the 0

- through 9 keys to be entered. Any other key causes a type mismatch error, which

aborts the program unless TRAPped.

10 PRINT “PRESS A KEY TO STOP ME” Prints message to the screen.

20 GET A$:IF A$="" THEN 10 If no key is pressed, then go
to 10.

30 PRINT "WHAT A RELIEF” Program continues normally.

Example:

Parameters:

BASIC Version 3.8 Commands, Functions, and System Variables 43

GETKEY abbr. gEKE
GETKEY input list :

Like INPUT, GETKEY accepts input from the keyboard during program
execution. GETKEY, however, accepts only a single key at a time as data entry.
Unlike GET, GETKEY waits for input.

variable(s)

The variable is nearly always a string variable. It stands for the key to be typed
inresponse to the GETKEY command. Use of a numeric variable allows only the
0through 9 keys to be entered. Any other key causes a type mismatch error, which
aborts the program unless TRAPped.

10 ? "PRESS THE CURSOR KEY TO ANSWER"

20 ? "MY GROUP IS: <- RED OR BLUE ->"

30 GETKEY A$ Waits for you to
press a key; the key’s
value is assigned

to AS.
40 IF A$ = CHR$(157) THEN ? “RED GROUP, Checks key entered.
DO ODD-NUMBERED EXERCISES” CHRS$(157) is cursor-
left key code.
50 IF A$ - CHR$(29) THEN ? “BLUE GROUP, Check key entered.
DO EVEN-NUMBERED EXERCISES” CHR$(29) is cursor-
right key code.
GET# Abbr. gE#

GET# file number, input list

Retrieves data one character at a time from an OPENed device or file. GET#
works like a GET command except that the GET command gets a character from
the keyboard, while the GET# command gets a character from a device or a file.
GET# works like INPUT# except that INPUT# gets a whole group of characters
from the file, while GET# gets only one character at a time.

file number, variable(s)

1. The file number is a logical file number that links the file or device to other
commands, including the OPEN command that accesses the device or file before
it can be used. ‘

2. The variable is nearly always a string variable. Use of numeric variables
allows only values from ASC(“0”) (48) to ASC(“9”) (57) to be read. Anything else
causes a type mismatch error, which aborts the program unless TRAPped.

Example:

Parameter:

Example:

44

10 OPEN 8,8,2,”$"

20 DO UNTIL ST<>0

30 GET#8 K$

The BASIC Language

40 IF(ASC(K$)AND127>31 THEN PRINT K$

50 LOOP
60 CLOSE 8

GOSUB line number

Opens communica-
tion to the disk
directory file.
Repeats a loop until
the status byte indi-
cates an end-of-file
Or an error.

Assigns one character
from the disk file

to K$.

Prints noncontrol
characters.

Closes disk file.

Branches the program to a subroutine, which is a group of program lines that
performs a reusable task. You can reuse a subroutine as often as you like just by
calling it with the GOSUB command. Subroutines are particularly useful in
programs that repeat a task.

Subroutines can appear anywhere in the program. They are ended by the
RETURN command, which sends program control back to the main body of the
program. Do not exit subroutines with a GOTO command. The program con-
tinues at the line following the GOSUB command.

starting line number for subroutine

10

GOSUB 80

GRAPHIC 1,1

IF LEFTS(CS,1)
IF LEFTS(CS,1)
COLCR 1,C,3

non

"R" THEN C
qui THEN C

INPUT "WHAT SHAPE DO YOU WANT TO DRAW"; S$
INPUT "DO YOU WANT THE SHAPE TO BE RED, BLUE, OR GREEN"; C$

IF S$ <> "CIRCLE" THEN INPUT "HOW MANY SIDES DOES THE SHAPE HAVE"; X
IF S$ = "CIRCLE" THEN X = 180 '
IF X = ¢ THEN PRINT "ZERO IS NOT ALLOWED. REENTER":GOTO 30

3: GOTO 119
7: ELSEC = 6

REM AFTER SUBROUTINE, PROGRAM RESUMES AT LINE 50
INPUT "WANT TO DRAW ANOTHER SHAPE"; A$
IF LEFTS(A$,1) = "N" THEN END: ELSE GOTO 1@
REM BEGIN SUBROUTINE TO DRAW SHAPE

REM USE INPUT FROM LINE 20 TO SET COLOR IN LINE 110

REM USE INPUT FROM LINE 30 TO FIGURE NUMBER OF SIDES OF SHAPE
CIRCLE, 160,100,690,59,,,,360/X

Parameter:

Examples:

BASIC Version 3.8 Commands, Functions, and System Variables 48

-

130 PAINT, 160,100
140 CHAR,2,2, "YOU HAVE DRAWN A "+S$

145 REM USE DELAY LOOP TO PROLONG SHAPE DISPLAY
150 FOR Y = 1 TO 300: NEXT Y

155 REM SWITCH BACK TO TEXT MODE

160 GRAPHIC 0,1

165 REM END OF SUBROUTINE

170 RETURN

GOTO or GO TO Abbr. g0
GOTO line number

Tells the computer to branch to another line and continue execution there. You
can also use GOTO in immediate mode to jump into a program and begin
executing it. The difference between executing a program with a RUN command
and an immediate mode GOTO is that the RUN command clears all variables
before executing the program, and GOTO does not.

line number

GOTO can send execution to a later or earlier line in the program. When
GOTO sends the program back to a previously executed line, an infinite loop
results unless you also include a statement or mechanism such as a counter to end
the loop.

10 INPUT"WHAT'S YOUR NAME”; N$ GOTO sends the program

20 GOTO 10 back to line 10 each time line
20 is executed; this causes an

NEwW infinite loop.

10 INPUT “WANT TO REPEAT”; N$ GOTO sends the program

R0 IF LEFT$(N$,1) = “N” THEN END back to line 10 unless you

30 GOTO 10 answer N to the INPUT ques-
tion. Typing N ends the loop.

GRAPHIC Abbr. gR

GRAPHIC mode, clear

GRAPHICCLR

Switches to one of the four graphic drawing modes, or from a graphic drawing
mode to the text modes. You can also clear the screen or the bit-mapped memory
area that is set aside for graphics when you enter one of the graphic drawing
modes.

a6 The BASIC Language

Parameter Values Default
Mode 0-4 No default
Clear screen option Oorl 0

CLR command option CLR No default

1. You can use the GRAPHIC command to switch to any of these modes:

text mode
high-resolution mode
split-screen high-resolution mode

multicolor mode

A W N - O

split-screen multicolor mode

GRAPHIC 0 switches from a drawing mode to text/graphic mode, in which
letters are uppercase and you can print all the graphic symbols on the fronts of the
keys. If you want to switch to the alternate text mode, in which letters can be both
lowercase and uppercase and in which you can print only the left-side graphic-key
symbols, first switch to text/graphic mode, and then press the SHIFT and
keys together or PRINT CHR$(14).

2. If you want to include a screen-clearing option with the mode choice, add a
comma and 1 after the mode number. If you do not add this option, the computer
switches back to whatever was on the screen the last time it was used in the current
computing session.

3. The GRAPHIC command can also release the 12K area devoted to graphic
modes. The first time you access any one of the graphic drawing modes, a 12K
area is set aside for the graphics screen and your BASIC program is moved above

“it. When you return to a text mode, this area remains set aside for graphic mode
use unless you tell the computer to release it. Just issue a GRAPHIC CLR
command to regain use of this 12K of memory.

Note: If you define a function with DEF FN before you execute a GRAPHIC
command, the function subsequently may not execute properly (when FN is
‘used). In other words, the function definition is not moved properly. Care must
be taken when defining functions and using graphics in a single program.

Note:. A graphics screen actually requires only 10K bytes of memory. The
amount removed from BASIC RAM is 12K because the screen must be located
on 8K boundaries. The screen is located from $2000 to $3FFF; its color/lumi-
nance memories are located from $1800 to $1 FFF. This leaves the 2K from $1000
to $17FF unused, but unavailable for BASIC. '

Examples:

oo

BASIC Version 3.8 Commands, Functions, and System Variables 47

GRAPHICO,1 Switches from a graphic mode to the text modes. The
last text screen is cleared.
GRAPHIC CLR Releases the 12K bit-mapped graphic area.

GRAPHIC 2,1 Switches to split-screen high-resolution mode and clears
the graphic screen.

GRAPHIC 3 Switches to full-screen multicolor mode without clearing
the graphic mode screen.

GSHAPE Abbr. gS

GSHAPE string variable, coordinates, mode

GSHAPE (GetSHAPE), which is the opposite of the SSHAPE (SaveSHAPE)
command, retrieves and displays a graphic screen area saved by an SSHAPE
command. You can use SSHAPE and GSHAPE in any graphic mode to store
and retrieve a rectangular section of the screen that is up to 255 text-sized
characters long.

These graphic screen areas are saved as text-string values in memory. You use a
text-string variable to identify the screen area, just as you use a variable to
identify any type of value.

After yousave a screen area with SSHAPE, you can display it anywhere on the
graphic screen. When you retrieve the area in the GSHAPE command, you give
the screen location where you want the area to be displayed.

string variable, top corner coordinate, display mode

1. The string variable is the name assigned to the graphic screen area saved
with the SSHAPE command. Retrieve the area by using the same string-variable
name used in the SSHAPE command.

2. Display a copy of the saved graphic screen area anywhere on the screen by
giving the coordinates of the top left corner of the screen area where you want the
drawing to appear.

3. When youretrieve the saved area, you can choose one of the five options for
displaying it.

display duplicate of saved area (default)

display saved area in reversed colors

0

1

2 OR saved area with current area

3 AND saved area with current area
4

XOR saved area with current area

Option 0, which is the default value for this parameter, draws the area as you
saved it.

Parameters:

48 The BASIC Language

Option 1 inverts the color values, so the shape is drawn as a reversed image of
the saved area.

Option 2 overlays the shape on the existing screen pattern.

Option 3 displays only that part of the shape that covers an existing screen
pattern. :

Option 4 inverts the part of the existing screen pattern covered by the shape.

Chapter 4 further explains the GSHAPE and SSHAPE commands.

HEADER Abbr. heA
HEADER disk name, Idisk id, Ddrive, ON Uunit
]

Before you can store information on a new, blank disk, you must prepare the
disk by formatting it. Formatting, also called headering, puts the blank disk into
the format required by your disk drive. The disk is divided into blocks and a
directory for the disk is prepared. Headering is necessary because blank disks are
manufactured to be used in any brand of disk drive, and you need to format the
disk so that it is compatible with your disk drive.

You MUST header a new disk before you can save files on it, but use the
HEADER command with great care because headering completely and perma-
nently erases any files already on the disk. You can header a used disk if you are
willing to erase its current contents.

disk name”, Iid code, D drive number, U unit number

1. The disk name (in quotes) can be up to 16 characters long.

2. Give the disk a unique two-character code. Use two characters for an id
code, not just one. Type an I before the id code.

3. Drive numbers are either 0 or 1. The order of the id code and drive number
parameters can be reversed.

4. Unit number is an optional parameter. Use it only if you have more than one
disk drive connected to your computer and you are using a device other than unit
8 in the header procedure. You must precede the unit number with U, and the unit
number must be between 8 and 11. You can type ON before U, but ON is not
required.

Are You Sure?

When you issue a HEADER command and press RETURN in immediate mode,
the command is not executed immediately. First, the computer displays the
question ARE YOU SURE? This question gives you a chance to make sure the
disk does not contain information you want to keep.

To proceed with the headering procedure, type Y or YES and press RETURN.
To abort the header, just press RETURN. In program mode, the question is not
asked.

Examples:

Example:

BASIC Version 3.5 Commands, Functions, and System Variables 49

Partial Headering

You can also clear a disk directory on an old disk without formatting the disk.
This procedure, which gives you an empty disk with the old id, is called a partial
header. Omit the id code from the HEADER command to do a partial header.

Note: The drive and unit number parameters and the disk name can be
specified with a variable or expression in parentheses.

HEADER "CIRCLES”,DO,IG3
HEADER “INSURANCE”,D1,IP5
HEADER "HOUSEFILES”,DO Performs a partial header.
HELP Abbr. heL
Highlights an erroneous command in a BASIC program by putting the com-
mand in flashing mode. If you want to highlight the error in a line, use HELP

after the computer displays an error message when you execute a program. The
HELP function key is defined with this BASIC command.

HEXS Abbr. hE
HEXS (number)

Gets the hexadecimal value for the decimal number in parentheses as a four-
character text string. The value of the number in parentheses must be between 0

- and 65535 inclusive. Since the hexadecimal value is always printed as a four-

character string, zeros are placed at the beginning of values that are less than four
characters long.

Note: The HEXS function accepts only nonnegative input. To use 16-bit two’s
complement input, use

X$ = HEX$(X-(X<0)*65536)

PRINT HEX$(45), HEX$(2001)
002D 07D1

IF...GOTO...ELSE Abbrs. if/g0/eLL
IF logical value GOTO line number : ELSE commands

Branches the program based on the value of a conditional clause. IF is a
compound conditional statement that checks the status of a condition in the
command and then chooses one of two courses of action.

One of the two IF command options is stated in the GOTO clause, which is
executed when the IF condition is true. When the IF condition is false, the GOTO

Example:

80 The BASIC Language

clause is ignored and execution passes to the next line in the program or to the
ELSE clause if one is present.

The GOTO clause is like a GOTO command: it tells the computer to go straight
to a specified line number and resume execution there. The line number can be
anywhere in the program.

IF...GOTO...ELSEis alimited variation of IF ... THEN ... ELSE. Use
IF...GOTO...ELSEinstead of IF... THEN... ELSE when the THEN clause
would contain a GOTO command anyway.

s true-false _condition GOTO line number : ELSE clause

1. The conditions in the IF command can use comparison operators (=, <, >,
<>, <=, >=) to compare values. The values can be any of the following:

® Numbers or text strings
® Any type of variable
® Variables on both sides of the comparison operator

® Mathematical formulas

2. The line number after GOTO tells the computer where to go when the IF
condition(s) is (are) true.

3. The ELSE clause contains instructions that are followed only when the IF
condition(s) is (are) false. The ELSE clause is always optional. It must be
separated from the rest of the command by a colon.

10 INPUT X Line 20 compares the value input for X to 0.
20 IFX<=0GO0TO 10 The GOTO command executes only when it is
30 PRINT X true that X is less than or equals 0.

IF ... THEN...ELSE Abbrs. if/tH/eL

IF logical value THEN commands : ELSE commands

IF is a compound conditional statement that checks the status of a condition in
the command and then chooses one of two courses of action.
One of the two IF command options is stated in the THEN clause. The other

“ option can be stated in an ELSE clause. If no ELSE clause is present, execution

continues with the next line in the program when the condition is false.

The status of the IF command condition determines whether the THEN clause
or the alternative is to be executed. THEN is executed when the IF condition is
true, or met; ELSE is executed when the IF condition is false, or not met. The
computer executes either the THEN clause or the ELSE clause, but never both.

BASIC Version 3.5 Commands, Functions, and System Variables 81

Parameters: true-false condition THEN clause : ELSE clause

Example:

Examples:

1. The conditions in the IF command can use comparison operators (=, <, >,
<>, <=, or >=) to compare values. The values can be any of the following:

® Numbers or text strings
® Any type of variable
® Variables on both sides of the comparison operator

® Mathematical formulas

2. The THEN clause contains commands that are executed only when the IF
command condition(s) is (are) true. The THEN clause, which is always a required
part of the IF command, can contain any legal commands. (If the THEN clause
contains more than one command, they must be separated by colons.) The THEN
clause must be typed on the same line as IF with no punctuation separating it
from the keyword THEN. If the THEN clause is a GOTO, the keyword GOTO
can be omitted.

50 IF X$ - "HALT” THEN END The program ends when X$ does
equal HALT. The THEN clause is
not executed otherwise.

3. The ELSE clause contains a command that is executed only when the IF
condition(s) is (are) false. The ELSE clause can contain any legal command. If the
ELSE clause is a GOTO, the keyword GOTO can be omitted. The ELSE clause is
always optional, but the THEN clause is always required, so an IF command
cannot have an ELSE clause but no THEN clause.

ELSE must be separated from the THEN clause by a colon. ELSE is a clause,
not an independent command; type THEN and ELSE clauses on the same lines as
the IF command. ‘

Note: IF commands can be “nested,” but their ELSE commands will not be.
When an IF condition is found to be false, the next ELSE clause on the line is
always executed.

30 IF A =B THEN PRINT When A equals B, the THEN
"EQUALITY”: ELSE GOTO 100 clause executes and the ELSE
clause does not. When the condi-
tion is false, the THEN clause
does not execute, and the ELSE
clause does.
40 IFA=0THENIFB=0 Prints BOTH 0 if A and B are
THEN PRINT “BOTH O”:ELSE zero. Prints ONE NONZERO if
PRINT "ONE NONZERO” either is not zero.

Example:

82 The BASIC Language

INPUT Abbr. none
INPUT string; input list

Accepts your input from the keyboard during program execution. The pro-
gram waits for you to type the input and press the RETURN key before it
continues. You can add a question to the INPUT command to help the user
understand the type of input expected.

: “prompt question”; variable(s)

1. The prompt question, which is optional, must be in quotes. If you omit the
prompt, do not put the semicolon before the variable.

Do not type a question mark at the end of the question. Whether or not you
include a prompt question, INPUT displays a question mark to indicate that
keyboard input is expected. If you add the prompt question, the automatic
question mark is displayed at the end of the question.

Note: If youdo not want a question mark to be displayed for keyboard input,
OPEN the keyboard (device number 0) as a file. Then, PRINT your prompt
(ending with a semicolon) and use INPUT# to read the keyboard.

2. The data values you input from the keyboard are assigned to the INPUT
variable. Use text-string variables for text input. You can use more than one
variable in an INPUT command. If you do, separate the variables with commas;
the semicolon is used only to separate the prompt question (if there is one) from
the variables. If you use more than one variable, you must enter a value for each
(separated by commas) before the program can continue. Otherwise, a double
question mark will prompt for the rest of the input.

10 INPUT “WHAT’S THE DESTINATION”; D$
20 PRINT "PACKAGE TO ”;D$

RUN

WHAT'S THE DESTINATION? LONDON
PACKAGE TO LONDON

INPUT# Abbr. iN

INPUTH# file number, input list

Retrieves a data value from an OPEN file or device and assigns it to variables.
INPUT# works like INPUT, but instead of getting data input from the keyboard,
INPUTH# gets data from a file or device. The file or device must have been opened
using the same logical file number. See also GET#. '

BASIC Version 3.5 Commands, Functions, and System Variables 83

Parameters: file number, variable(s)

Example:

1. The file number is a logical file number that identifies the file or device and
links it to other commands. The file or device must have been previously accessed
by an OPEN command with the same logical file number.

2. The variable type must match the type of value to be assigned (e.g., if you
are assigning text values, you must use text-string variables). If the INPUT#
command contains more than one variable, separate the variables with commas.

10 OPEN 8,8,15 | Accesses the disk drive error channel.
R0 INPUT#8,N,E$,T,S8 Gets three numeric and one text-string values
from the channel and assigns them to N, ES$,

T, and S.
30 PRINTN, E$, T, S Prints the values on the screen.
40 CLOSE 8 Closes the disk channel.
INSTR Abbr. inS

INSTR (master string, substring, start position)

You can find the position of a text string within another text string by using the
INSTR function. INSTR returns a number that represents the character position
in the master string where the sought string begins. If the sought string is not
present, a value of 0 is returned.

The INSTR function has an optional parameter that lets you begin the text-
string search at any character location in the master string. Use this option if you
have found one instance of the sought string and want to search for additional
appearances of the sought string or if you want to begin the search after some
known occurrence of the sought string. This option is the only way to find
additional instances of the sought string.

master string, sought string, starting position

1. The master string is the text string being searched. It can be any text string
enclosed in quotes. You can also use a text-string variable or string expression as
this parameter. Only text-string values are allowed.

Note that blanks and punctuation marks are counted as character positions.

2. The sought string is the text for which you are searching the master string.
The sought string can be any text string enclosed in quotes. You can also use a
text-string variable or string expression as this parameter. Only text-string values
are allowed in the INSTR function.

3. The starting position, which is optional, is a number representing the
character position in the master string where you want to begin the search. The
default is the first position in the master string. Once you have found one instance
of the sought string, you can search for another by issuing another INSTR
command using the location of the found string + 1 as the starting position.

Examples:

Examples:

84 The BASIC Language

10 A$ = "THE LAST STRAW”
20 PRINT INSTR(A#$, "ST”)

RUN
7 The sought string is found starting at
character position 7.
PRINT INSTR(A$, "ST”,8) Using 7 + 1 as the starting location,
10 another instance of the sought string is
found at character position 10.
INT Abbr. none
INT (number)

Truncates a number with decimal parts into a whole integer number. The INT
function simply ignores the decimal parts of the number; INT does not round the
number. This means that the result is always less than or equal to the original
number. For example, INT(9.9) is 9, not 10.

When the number is negative, the result is also always less than or equal to the

-number. In the case of negative numbers with a decimal value greater than .0, INT

returns the next lowest integer. For example, INT(-5.1) is -6.
The INT function is often used with the RND (random number) function to
generate random whole numbers. See the RND function.

number in parentheses

The number can be any number, positive or negative. You can also use a
calculation or variable as the number.
Note: To round off a number, X, use INT (X+.5)

PRINT INT(-5.0)
-5

PRINT INT(2.2+3)
6

Joy Abbr. jO

~ JOY (port number)

Finds the status of either joystick. Use JOY(1) to examine the status of the
joystick injoy port 1; use JOY(2) to examine the status of the joystick in joy port
2. .

The JOY function reads nine different joystick positions, which are numbered
0 through 8. Nine additional readings, numbered 128 through 136, are displayed
when the fire button is also being pressed. The readings are shown in Table 1-5.

Examples:

Parameters:

Examples:

BASIC Version 3.8 Commands, Functions, and System Variables 88

TaBLE 1-5. Joystick readings

Left Left Right Right

&up Left & down Down & down Right &up Up Middle
No FIRE
BUTTON 8 7 6 5 4 3 2 1 0
WITH FIRE

BUTTON 136 135 134 133 132 131 130 129 128

PRINT JOY(1)
4 Joystick 1 is positioned down and to the right. The fire
button is not being pressed.
PRINT JOY(2) '
134 Joystick 2 is positioned down and to the left. The fire
button is being pressed.
KEY Abbr. KE

KEY number, definition

Defines a function key and can also display an up-to-date list of the function
key definitions.

Display alist of each function key definition by typing the command KEY and
pressing the RETURN key. Do not add any parameters.

Redefine a function key by supplying values for the following parameters:

key number, definition

1. Type the key number of the key you are redefining. You must follow it with
a comma. If you are just displaying a list of key definitions, omit this parameter.

2. Type the key definition as a text string. You can use BASIC functions and
any non-BASIC word in quotes. For a compound definition, join the strings with
plus signs (+). '

Put the command in quotes. Add +CHR$(13) if you want an automatic
RETURN at the end of the definition. Add +CHR$(34) if you want to use
quotation marks.

KEY Lists the current key definitions.
KEY 2,"GRAPHIC 2,1”+CHR$(13) Defines key 2 to execute a GRA-
PHIC 2,1 command.

KEY 3,”INPUT”+CHR$(34) Defines key 3 to display INPUT”
on the screen.

Examples:

86 The BASIC Language

Defining a Function Key for Program Input

The function key definition procedure can also be used in a program. INPUT can
be used to accept function key definitions. Of course, the input must end with a
RETURN character from the definition or the keyboard. GETKEY receives only
the first letter of the definition. Also, if GETKEY is called a second time following
the receipt of a multiple character function key definition, an error results.

To be able to use a function key in a GETKEY command, you must first
redefine the key as a single CHRS code. This definition allows BASIC to consider
the function key as a single key not a string of characters. Once the key is defined
as a single key, you can press the key as input fora GETKEY command. Then you
can use an IF command to see if the key pressed equals the CHRS code for the
function key and use a THEN clause to perform the desired operation(s). The
following example redefines function keys 1 and 2 as CHRS codes 133 and 137
(these are the CHRS codes used for the function keys on the Commodore 64).

Note that redefinitions written in a program are still in effect when the program
ends. To restore the original definitions, press the reset button.

5 REM DEFINE KEYS 1 AND 2 AS CHR$ CODES 133 and 134

10 KEY1,CHR$(133): KEYR,CHR$(134)

20 GETKEYZ$: REM PRESS F1 OR FR

25 REM USE ASC TO CHECK THE CHR$ CODE FOR THE PRESSED
KEY

30 IFASC(Z$)=-133 THEN PRINT"DRAW A CIRCLE”:X-1

40 IFASC(Z$)=134 THEN PRINT"DRAW A DIAMOND":X=360/4

50 GRAPHIC1,1 '

60 CIRCLE,160,100,60,50,,,X

In this example keys 1 and 2 are redefined to be YES and NO and can be used as
input in line 40. ' '

10 REM DEFINE KEYS 1 AND 2 AS YES AND NO

20 KEY 1,"YES"+CHR$(13)

30 KEY 2,"NO"+CHR$(13)

40 INPUT "WANT TO SEE THE KEY DEFINITIONS”;A$
50 IF A$ = "YES” THEN KEY |
60 IF A$ = “NO” THEN PRINT "OKAY"

LEFTS Abbr. leF
LEFTS (string,length)

Truncates the string in parentheses to the specified length. LEFTS$ is used
frequently to check input, particularly to check just the first letter of the input.

BASIC Version 3.5 Commands, Functions, and System Variables 87

Parameters: string being truncated, number of characters to use

Examples:

 Examples:

1. The master string can be any text string, text-string variable, or string
expression. .

2. The LEFTS result always begins at the leftmost character in the master
string. You can keep as many characters as you want. If the length specified is
longer than the master string, the whole string is returned.

PRINT LEFT$("GRADUAL" 4)

GRAD

PRINT LEFT$("RED” 4) The string contains only
RED : three characters, so only

three are printed.

10 INPUT "DO YOU WANT TO CONTINUE"; A$Checks text string AS,
20 IF LEFT$(A$,1)="Y” THEN GOSUB 70: input in line 10, for the

ELSE END : string Y.
LEN Abbr. none
LEN (string)

Counts the number of characters in a text string.

master string

The master string can be any text string, text-string variable, or string expres-
sion. Blank spaces and punctuation count as characters.

PRINT LEN(“HAYWIRE") '
v

10 INPUT “"WHAT’S YOUR LAST NAME"; L$ Checks the length of
20 IF LEN(L$) > 8 THEN L$ = LEFT(L$,8): L$ and used only the

PRINT “YOUR NAME HAS BEEN eight leftmost char-
SHORTENED” acters if the length is
30 PRINT L$ over eight.
RUN

WHAT'S YOUR LAST NAME ? MACDONALDSON
YOUR NAME HAS BEEN SHORTENED
MACDONAL

Parameters:

Examples:

Examples:

88 The BASIC Language

LET Abbr. 1E
LET variable = expression

Makes a variable equal to a value. The word LET may be (and usually is)
omitted from the command. The LET command is unique in that its main
keyword is optional.

variable = value

1. The variable type must match the type of value being assigned (e.g., if the
value is a text string, the variable must be a text-string variable).

If you want to assign more than one variable per line, separate the assignments
with colons.

2. The value can be another variable (X = Y), a calculation (X = X + 10), or a
constant value (X = 18). A variable can be equal to a calculation, including a
formula containing the variable itself and another value.

The value for a variable can change during the program.

10 LET X = 4/23*Y Assigns the value 4/2*Y to X.

20 N$ = "NAME” Assigns the text string NAME to N§.

30 X% =X% +A Gives X% the value of the answer to X% + A.
40 A=4:B=5 Assigns the value 4 to A and the value 5 to B.
LIST Abbr. II

LIST line number-line number

Displays a copy of a BASIC program or BASIC program lines.

: line number—Iline number

Line numbers are optional. If you omit them, the whole program is displayed.
If you want to list just one line, type LIST and the line number. If you want to list
just part of the program, type the first and last lines you want to display.

If you want to list the beginning of the program, type LIST followed by a dash
and the last line number you want to display. If you want to list the end of the
program, type LIST followed by the first line you want to see and then a dash; do
not add any ending line.

LIST. Displays all the lines in the current program.
LIST R0 Displays line 20 from the current program.

LIST- 100 Displays the beginning of the program up to line 100.
LIST 80- Displays the program from line 50 on.

BASIC Version 3.8 Commands, Functions, and System Variables 89

LOAD Abbr. 10
LOAD file name, device, relocate

Retrieves a program from a cassette tape or from a disk and loads it into
memory. Use LOAD for tape programs and nonrelocated disk loads. Use
DLOAD for loading BASIC programs from the disk. For more information see
Chapter 6.

LOADing a Tape Program

After youissue a LOAD command for a tape program, the computer tells you to
PRESS PLAY ON TAPE.

1. Insert the tape.

2. Press the REWIND button to rewind the tape completely when necessary.
Press the STOP button when the tape is rewound.

3. Type LOAD “program name”; the program name is the name of the
program you want to load. When you load the first program (after rewinding) or
the next program on the tape, you do not have to include the program name; the
computer automatically loads the next program on the tape. 4

4. Press the RETURN Key. The message PRESS PLAY ON TAPE appears
on the screen. '

5. Pressthe PLAY button. The screen goes blank. When the program is found,
the following message is displayed:

FOUND program name

6. Press the key (or wait a moment). The screen goes blank. When the
loading procedure is finished, the READY prompt is displayed.

7. Type RUN and press the RETURN key to execute the program.

Note: Be sure to press the right buttons on the cassette recorder. The computer
knows when to wait for a button to be pressed but does not know which button
was pressed. If you press the wrong button and the computer “freezes,” eject the
tape, press the computer’s reset button, and repeat the loading procedure.

Note: Foranonrelocated LOAD, use LOAD “program name”, 1,1. Programs
can be saved so that a nonrelocated LOAD is always performed. See SAVE.

See the VERIFY command for a quick method for searching a tape for a
program.

LOADing a Disk Program

Although it is easier to load disk programs with the DLOAD command, you can
also use LOAD. You must use LOAD to do a nonrelocated load from disk. When
you use LOAD with disk programs, you must include the disk drive device
number.

Parameters:

Examples:

60 The BASIC Language

After you issue a LOAD command for a disk program, the computer displays
the message OK SEARCHING. When the program is loaded, the message
(program name) FOUND is displayed, with the program’s name displayed. Type
RUN to execute the program. '

“file name”, device number, relocate flag

1. You must include the name of the file or use wild cards to get the first
program whose name matches. Enter the name in quotes. Youcanuse a variable
name in place of the file name. The variable must have a value. It may be in
parentheses (not in quotes). The only time this is likely to be useful is when you
load a program from within another program.

2. Device number is 1 for cassette recorder, and 8 for disk drive. The default
value is 1, so you can omit this parameter if you are loading from a cassette tape.

3. You are unlikely to use the relocate flag except for machine-language
programs. A flag of 0 tells the computer to load the program at the beginning of
the BASIC program area, and 1 loads the program at the memory location from
which it was saved.

Note: For disks, only program-type files can be LOADed.

Note: In program mode, a RUN command (with no CLR) is automatically
issued following a LOAD operation. For example, you may want to LOAD a
machine language subroutine from BASIC.

10 IF L-0 THEN L-1 : LOAD “file”,8,1

The LOAD is executed only once, and the program continues.

LOAD Loads the next program on tape.

LOAD “SHAPES3",8 Loads file SHAPES3 from disk.

90 LOAD (Y$) Loads a file from tape. The name of the file is the
: current value of YS$.

LOCATE Abbr. 1oC

LOCATE coordinates

Repositions the pixel cursor on a graphic mode screen. The invisible pixel
cursor marks the final point of the previous drawing and the default beginning
point of the next drawing.

Parameter Values
Coordinates
Column coordinate
High-res modes 0-319
Multicolor modes 0-159

Row coordinate 0-199

Example:

Parameter:

Examples:

BASIC Version 3.8 Commands, Functions, and System Variables 61

Give the coordinates of the point on the graphic screen where you want the
pixel cursor to be moved. The next drawing will use this point as its starting point
unless the drawing command gives some other starting point. For more informa-
tion, see Chapter 4.

10 GRAPHIC 4,1

20 LOCATE 30, 25 Puts the pixel cursor at column 30, row 25.

30 DRAW TO 60,50 Draws a line from the current pixel-cursor location
to column 60, row 50.

LOG Abbr. none
LOG (number)

Finds the natural logarithm of a number. LOG returns the log base e (e = the
mathematical constant, approximately 2.71828183) of the number in paren-
theses. Divide by LOG(10) to get the log base 10. For more information, see the
Mathematical Calculations section of Chapter 3.

any numeric expression with a positive value

PRINT LOG(R) Prints the natural logarithm of 2.
693147181

PRINT LOG(2)/LOG(10) Prints the logarithm base 10 of 2.
301029996 -

LOOP Abbr. 100
Works with DO to set conditions for a repeated sequence of program lines. See
DO.
MIDS$ Abbr. ml
MIDS (string, start position, length)

Gets a substring of the specified length within a master text string. MIDS starts
the substring at the character position specified. MIDS$ can also be used to change
part of a text string.

: master string, starting position, number of characters to use

1. The master string can be any text string, text-string variable, or string
expression.

2. The substring is begun at the starting position; characters that come before
the starting position are not used. The starting position can be any character
position in the master string. If it is greater than the length of the master string, a
null string is returned.

Examples:

63 The BASIC Language

3. The length of the substring can be any length. If it is greater than the number
of characters after the start position in the master string, the entire rest of the
string is returned. The length can be omitted. If it is omitted, all of the string after
the start position is returned.

MIDS$ can also be used on the left side of an equation to replace asubstring of a
given length within the master string.

PRINT MID$("GRADUATE",6,3)

ATE

10 INPUT “ENTER THE NEXT MODEL"; A$ Examines five char-
20 IF MID$(A$,6,5)<>"WAGON” THEN END acters starting at

30 MID$(A$,6,5)="SEDAN": PRINT A$ character 6 for the
RUN string WAGON.
ENTER THE NEXT MODEL ? 4-DR WAGON WAGON is replaced
4-DR SEDAN ‘by SEDAN.

PRINT MID$(”ROCKETSHIP”,7)

SHIP

MONITOR Abbr. mO

Leaves BASIC and goes to the built-in machine-language monitor. You can
use the 13 machine-language monitor commands to write and execute programs
in machine language. Return to BASIC from the monitor by typing X and
pressing the RETURN key. See Chapter 5 for more information on machine
language.

NEW Abbr. none

Erases the current program from memory. The program cannot be recalled
unless it is saved on tape or disk. (If you execute a NEW accidentally and want to
try to retrieve your program, see Chapter 3 for information on unNEWing.)
Always issue a NEW command before you start writing a new program to be sure
the program area of memory is clear. If you do not clear the memory, lines from
the previous program will mix with your current program.

NEXT 'Abbr. nE

4

Marks the closing bracket of a FOR loop. See FOR.

Parameters:

Example:

BASIC Version 3.8 Commands, Functions, and System Variables 63

ON...GOSUB Abbrs. on/goS
ON number GOSUB line number, line number, etc.

Branches the program to one of a list of subroutines. The selection is based on
the condition of the ON value and the position of the subroutine line numbers in
the GOSUB list.

Each time ON . . . GOSUB executes, only one of the line numbers in the
GOSUB list is used. When the ON value equals 1, the computer goes to the first
subroutine in the GOSUB list. When the ON value equals 2, the computer goes to
the second subroutine in the GOSUB list, and so on.

ON value GOSUB subroutine line number list

1. The ON value can be a variable or a calculation. It cannot be a negative
number. If it is equal to zero or a number that is greater than the number of
subroutine line numbers in the GOSUB command, no subroutine is executed. If it
is not a whole number, its truncated value is used. For example, if there are four
subroutine line numbers in the GOSUB command (e.g., ON number GOSUB 40,
70, 100, 130), the number must be greater than or equal to 1 and less than 5 for a
subroutine to be executed.

2. The ON value selects a subroutine line number from the GOSUB list based
on its relative position in the GOSUB list.

1@ INPUT "DO YOU WANT TO DRAW A TRIANGLE, SQUARE, OR PENTAGON"; S$
12 REM USE INPUT FROM LINE 1¢ TO SET NUMBER OF SIDES

15 s$ = LEFT$(S$,1) : X = 3 : IF 8$ = """ GOTO 20

16 X =4 : IF SS = "S" GOTO 20

17 X =5 : IF S$ < "P" GOTO 10

20 INPUT “DO YOU WANT THE SHAPE TO BE RED, BLUE, OR GREEN"; CS$
30 REM USE INPUT FROM LINE 20 TO SET COLOR IN LINE 60

40 IF LEFTS(CS,1) "R" THEN C = 3: GOTO 60

50 IF LEFTS(CS,1) "B" THEN C 7: ELSEC = 6

60 COLCR 1,C,3

80 GRAPHIC 2,1

85 REM 2 IS SUBTRACTED FROM NUMBER OF SIDES i

86 REM WHEN X=3, 3-2=1, SO PROGRAM GOES TO FIRST SUBROUTINE, ETC.
90 ON X-2 GOSUB 140, 180, 210 :
100 REM AFTER SUBROUTINE, PROGRAM RESUMES AT LINE 110

110 INPUT "WANT TO DRAW ANOTHER SHAPE"; AS

120 IF LEFTS$(AS,1) = "N" THEN GRAPHICCLR:END: ELSE 10

130 REM BEGIN SUBROUTINE TO DRAW TRIANGLE

1490 CIRCLE, 160¢,100,60,54,,,,120

150 PAINT, 160,100 ‘

160 RETURN

170 REM BEGIN SUBROUTINE TO DRAW SQUARE

180 BOX, 10¢,50,220,15¢,,1

190 RETURN

200 REM BEGIN SUBROUTINE TO DRAW PENTAGON

210 CIRCLE, 169,1090,60,50,,,,72

22¢ PAINT, 160,100

230 RETURN

[}
nou

Parameters:

Example:

64 = The BASIC Language

ON...GOTO Abbr. on/g0
ON number GOTO line number, line number, etc.

Branches the program to one of alist of line numbers. The selection is based on
the condition of the ON value and the position of the line numbers in the GOTO
list.

Each time ON ... GOTO executes, only one of the line numbers inthe GOTO
list is used. When the ON value equals 1, the computer goes to the first line
number in the GOTO list. When the ON value equals 2, the computer goes to the
second line number in the GOTO list, and so on.

ON...GOTO issimilar to IF... GOTO, but ON lets you mclude a series of
GOTO lines while IF lets you include only one.

ON value GOTO line number list

1. The ON value can be a variable or a calculation. It cannot be a negative
number. If it is equal to zero or a number that is greater than the number of line
numbers in the GOTO command, no GOTO is executed. If it is not a whole
number, its truncated value is used. For example, if there are four line numbers in
the GOTO command (e.g., ON number GOTO 40, 70, 100, 130), the number must
be greater than or equal to 1 and less than 5 for a GOTO to be executed.

2. The ON value selects a line number from the GOTO list based on its relative
position in the GOTO list.

10 TRAP 130

20 INPUT “WHAT YEAR (1985-1994)";Y
30 PRINT "NEW YEAR’'S DAY FALLS ON “;
40 ON Y-1984 GOTO 70,80,90,100,120,60,70,80,100,120
50 PRINT”INVALID INPUT”:GOTOR0

60 PRINT”MONDAY":END

70 PRINT”TUESDAY”:END

80 PRINT"WEDNESDAY"”:END

90 PRINT"THURSDAY":END

100 PRINT"FRIDAY”:END

110 PRINT”SATURDAY":END

120 PRINT”SUNDAY”:END

130 RESUME 50

OPEN Abbr. oP
OPEN file number, device, secondary address, file name

Opens access to a peripheral device or to a tape or disk file. Devices and files
must be OPENed before you can issue other commands (such as INPUT# or
PRINT#) to them. You do not have to use OPEN before you load or save a
program.

BASIC Version 3.8 Commands, Functions, and System Variables (1]

Parameters: logical file number, device number, secondary address, “file name”

1. The logical file number can be from 1 to 255. Normally, use 1 to 127. For
some devices, 0 is a valid logical file number. Logical file numbers greater than
127 cause a line feed character to be sent after the carriage return at the end of
each line. Some non-Commodore printers or RS232 devices may require this.

The file number is not actually a part of the file or device you are opening. The
file number is just a temporary number used until you CLOSE the file. It gives the
computer a way to keep track of which device or file you are accessing. The file
number is like a number you take at a deli counter or laundry—it is associated
with you and your order only while your business is being transacted.

Once the device or file is OPEN, you must use the same file number for the
device or file when you address other commands to it. These other commands are
CLOSE, CMD, GET#, INPUT#, PRINT#, and PRINT# USING. Once the file
is CLOSEd, the logical file number is no longer associated with the file and you
do not have to use the same logical file number the next time you OPEN the file.

2. The device number identifies the other end (device or file) of the communi-
cation channel you are opening through the computer. If you are accessing a disk
file, use the disk drive device number; if you are accessing a tape file, use the
cassette recorder device number, and so on.

Use these device numbers:

0 keyboard

| cassette recorder
2 RS232 port

3 screen

4-5 printer (default is 4)
8-11 disk drive (default is 8)

3. The meaning of the secondary address depends on the device you are
accessing. ‘ ‘

® Foracassette recorder, there are three: 0 (read from tape), 1 (write to tape and
close with end-of-file marker), or 2 (write to tape and close with end-of-tape
marker). The default is 0.

® For a printer, you can use secondary addresses to send commands. For more
information, see Chapter 6 and the printer manual; these commands differ
according to printer brand and type.

® Foradisk drive, a secondary address names the channel being used. For more
information, see Chapter 6 and the disk drive manual. -

Examples:

68 The BASIC Language

4. Youcan use an optional name for the file on disk or tape. The file name can
be any 1 to 16 characters. If you intend to call the file by name, do it now because
you will not be able to later.

5. For disk flles, include in the quotation marks the optional type of file
following a comma. The types are P (program file), S (sequential file), L (relative
file), or U (user file). The default is sequential file. For more information, see
Chapter 6.

6. For disk files, an optional disk file mode (R for read, or W for write) can
follow the file type (still in quotation marks and separated from the type by a
comma). The default is read.

OPEN 4,4 : Opens communication to the printer so you
can print directly onto it.

OPEN 1,1,0,”"BOXES” Opens a tape file for reading from tape.

OPEN 8,8,15 * Opens the command channel to the disk drive.

' OPEN 1,84,”REC3,3,W” Opens a sequential file REC3 on a disk so you

can write data records to the file.

OPEN 44,0 Opens printer in upper case/ graphic mode.
OPEN 44,7 Opens printer in upper/lower case mode.
PAINT Abbr. pA

PAINT color source, coordinates, mode

Used in any graphic drawing mode to make the outline of a shape solid. The
shape is filled with color from the starting point until boundaries are met on all
sides. See Chapter 4 for more information on coordinates for PAINT.

Parameter Values Default
Color source 0-3 1
Coordinates pixel cursor
Column coordinate
High-res modes 0-319
Multicolor modes 0-159
Row coordinate 0-199
Boundary mode Oorl 0

1. The color source indirectly selects the painting color. There are five color
sources, but color source 4 (the border color) cannot be used in drawing com-
mands. Color sources 2 and 3 can be used only in multicolor modes.

0 screen background color

1 foreground color (default value)

Example:

Example:\

BASIC Version 3.5 Commands, Functions, and System Variables 67

2 multicolor mode extra color 1
multicolor mode extra color 2

4 screen border color
. ! '/\

The color source number you include in the PAINT command tells the
computer to draw in the current color for that source. For example, if you select
1, the computer paints in the current foreground color. If you want to use a color
other than one of the current source values, you must first use the COLOR
command to change one of the source values. Only sources 1 and 2 can be used to
draw with more than one color on the same screen. Sources 0 and 3 are global
(whole screen) colors.

If you want to use the default value (1, the current foreground color), you do
not have to type a number, but you must type a comma before the next parameter.

2. The coordinates tell the computer where to start painting. You can tell the
computer to start at any point within the space you want to paint. You never need
to include ending coordinates. The computer stops painting when the border is
reached. '

3. Boundary mode lets you choose whether to have the painting stop when it
reaches a border of the color source with which it is painting (select 0), or when it
reaches any nonbackground color (select 1). The default is 0. The other choice is
meaningful only in multicolor mode. '

Note: If the specified starting point was previously colored with a boundary
color, no painting will be done.

10 GRAPHIC 3,1 Draws a diamond and fills it in with
20 CIRCLE, 80,50,30,50,,,,90 the color in color source 3.

30 COLOR 3,12,4

40 PAINT 3, 80,50,1

PEEK : Abbr. pE
PEEK (memory location)

Finds the contents of any RAM location. The location must be between 0 and
65535. PEEK and POKE are complements and can be used together to place and
look at memory contents. Examining ROM using PEEK is not easy. See Chapter
4 (Copying the Standard Character Set) for one method.

POKE 3090,1 Displays an A at screen location 3090.
PRINT PEEK(3090) Prints the value of memory location 3090.
1

Parameters:

Example:

68 The BASIC Language

POKE : Abbr. pO
POKE memory location, number

Places a single value directly into a specific RAM location, such as each
position in the screen memory. Unless you are an advanced programmer, you are
unlikely to use this command.

memory location, value

1. Names the specific address of a memory location or input/output register.
The possible values are 0 to 65535. You can find specific addresses on the memory
map in Appendix G.

2. Gives the number (0-255) for the value you want to place in the memory
location. See the screen display chart in Appendix E for values that can be poked
to screen locations. These values are not the same as CHRS$ values.

10 SCNCLR

15 REM 3079 IS COL 7 OF ROW 1 ON SCREEN; 4071 IS BOTTOM
RIGHT CORNER

20 FOR X=3079 TO 4071 STEP 41

30 POKE X,0

25 REM PRINT AN @ SIGN AT 41-SPACE INTERVALS

40 NEXT X

50 FOR Y=3103 TO 4071 STEP 39

55 REM PRINT AN @ SIGN AT 39-SPACE INTERVALS

60 POKE Y,0

70 NEXT Y

POS Abbr. none
POS (number)

Finds the column in which the cursor currently resides. This is the column in
which the next item will be displayed by a PRINT command. The column
number is between 0 and 39. The number in parentheses is a dummy argument,
which means it does not mean anything. It is nonetheless required, and you
should just use POS(0). You can also find the column by using PEEK(202) and
the row by using PEEK(205).

PRINT Abbr. ?
PRINT output list

Displays the following types of information on the screen:

® Text entered in quotes

® Solutions to calculations

BASIC Version 3.5 Commands, Functions, and System Variables 69

® Values of variables or functions

Each PRINT command can contain one or more of these types of data. You
can use commas or semicolons to separate multiple PRINT items and to deter-
mine the format for output.

Parameters: “text message”
variable
calculation

All the parameters are optional. If no parameter is included, the PRINT
command prints only a carriage return. In most cases this results in a blank line
being PRINTed, but if the previous PRINT command ended in a semicolon, a
following PRINT with no parameters just goes to the next line. See the later
paragraph on using semicolons.

1. All text must be enclosed in quotes. Text messages are pnnted exactly as
they are typed. Calculations and variables typed inside quotes are also printed as
they are; PRINT does not attempt to find solutions for them when they are in
quotes.

2. When you tell the computer to PRINT a variable, the computer actually
prints the value the variable stands for, not the variable name. If no value has
been assigned to a numeric variable, a 0 is printed; if no value has been assigned to
atext-string variable, nothing is printed. Positive numeric values are printed with
a leading blank space; negative numeric values display the minus sign in front of
the number.

3. When you tell the computer to PRINT a calculation, the computer actually
prints the solution to the calculation. If the calculation contains a variable for
which no value has been assigned, the computer considers the variable to have a
value of 0 and solves the calculation accordingly.

Punctuation in PRINT Commands

You can separate multiple PRINT command items with commas or semicolons.
If you want to link the output from more than one PRINT command, you can
add a comma or a semicolon to the end of the first PRINT command. This
trailing punctuation tells the computer to treat the output as if it were from one
PRINT command instead of several.

Commas Force separate items into separate output zones of 10 spaces
each. Each new item begins in a new output zone, regardless
of how much space the previous item takes.

Semicolons Print separate items right next to each other. Numbers are
printed with one space or a negative sign in front and one
space behind. If you do not like this number format, see
PRINT USING or STRS for other options.

Examples:

Parameters:

70 The BASIC Language

PRINT “THE MEDIUM"
THE MEDIUM

PRINT 3/, 4+5, -2+
1.5 9 0

10 PRINT 3%10.2; 4-8;

15 REM SKIPTO THE NEXT LINE IF THE NEXT ITEM IS PAST COL 10
R0 IF POS(X)>10 THEN PRINT

30 PRINT 5+67.3

RUN

306 -4 7R3

10 INPUT “YOUR NAME AND AGE”; N$ A
20 PRINT N§;”, YOU ARE”; A
YOUR NAME AND AGE ? DAN

29 26
DAN, YOU ARE 26
PRINT# Abbr. pR

PRINT# file number, output list

Puts data values in an OPEN file such as printing information on a printer. Use
PRINT# to put values into tape or disk data files. To retrieve these data, use
INPUT# or GET#. When you use PRINTH# to tell the printer what to print, you
can use semicolons and commas to separate multiple data items, and they have
the same spacing effect as they have in PRINT commands.

When sent to a data file, a comma will cause a number of spaces to be sent and a
semicolon will place data items right next to each other. The data bytes are stored
in the file in the same format as they would be displayed on the screenin a PRINT
command. The format of the bytes written to a data file must be designed with the
method of retrieval in mind. If they are to be read one at a time by the GET#
command, any format is alright. However, if they are to be read by the INPUT#
command, care must be taken to store comma characters between values and
carriage return characters between lines of input.

logical file number, variable(s) or value(s)

1. The file number is a logical file number that links the file or device to other
commands, including the OPEN command that accesses the device or file before
it can be used. See OPEN for more information on logical file numbers.

2. The variable type must match the type of value to be written (e.g., if you are

* writing text values, you must use text-string variables). If the PRINT# command

contains multiple variables, separate them with commas or semicolons.

Example:

Parameters:

BASIC Version 3.5 Commands, Functions, and System Variables 71

10 OPEN 1,8,4,”SORT,S,W" Opens a disk file.
30 INPUT "HOW MANY NAMES TO ENTER";T

40 FORX-1TOT

50 INPUT "NEXT NAME”; A$

60 PRINT#1,A$;",”; Puts the value input
70 NEXT X in line 50 into the
80 CLOSE 1 disk file SORT.
Closes the disk file.

NEW
10 INPUT “STAFF TO RECEIVE MEMO”; A$
20 OPEN 44 Accesses printer.

- 30 PRINT#4,”MEMO” Prints to printer.
40 PRINT#4,”TO ALL ";A$;” STAFF MEMBERS”
50 CLOSE 4
PRINT USING or PRINT# USING Abbrs. ?usl/pR/usl

PRINT USING format; output list
PRINTH# file number, USING format; output list

Allows you to design a format for any type of output—text or numbers. You
can use up to nine symbols to define how you want printed material to appear.
The PUDEF command lets you replace up to four of the PRINT USING
symbols.

#logical file number, “format description”; items to be printed

1. Include afile number and # sign if you are writing to an OPEN file or device.
Omit this parameter if you are not writing to a file or device.

2. The format description can contain any of the followmg nine symbols. The
format must be enclosed in quotes.

Symbol Meaning

Represents any one character. If the item to be printed is longer
than the number of #s in the format, and the item is numeric, an
error occurs and *s are printed instead of numbers. If the item is
text, only as many characters of text as there are #s are printed.

, Prints a comma in numbers, which you cannot ordinarily do.
Place the comma in the format in the same position in which it
will appear in the number to be printed.

. Prints a decimal point in numbers. Only one decimal point can
appear per number to PRINT.

$ Prints a dollar sign. If you want the § to appear right next to any

73 The BASIC Language

number, place a # before the $ in the format. Otherwise, the §
does not “float” to a position next to the number (e.g., § 3.50
instead of $3.50).

+ . Displays a plus sign at the beginning or end (but not both) of a
number. If the number to be printed is negative, a minus sign is
displayed in the place designed for the plus sign.

- Displays a minus sign at the beginning or end (but not both) of a
number. If the number to be printed is positive, no sign is
displayed.

If you include no sign in the format, and the number is nega-
tive, a minus sign is displayed at the beginning of the number and
before a dollar sign, if one is included. If the number is positive,
no sign is displayed, but the space for the sign may be used to
display an extra digit in the number.

et Prints the number in scientific notation (e.g., 2E-04). The up
arrows must be preceded by a number sign (#).

= Centers text output in the format field (e.g., if the format field is
"=, and the text to be printed is TEST, TEST is printed
two characters to the right, centered in an eight-character field,
with the = sign counting as a character space).

> Right-justifies text output. If the text to be printed is shorter than
the output format, the text is printed right-justified instead of
left-justified.

Note: If numbers are longer than the format for numeric output, the number is
not printed. Instead, * symbols are printed. If a text string is longer than the
format for text output, as many characters of the text are printed as there are
spaces in the format (e.g., if there are six places in the format and the item to be
printed is SCHOOLHOUSE, SCHOOL is all that is printed).

3. Theitems to be printed can be text or numeric, and they can be variables or

‘formulas. List these items at the end of the PRINT USING command, separated
from the format by a semicolon. Multiple items to be printed must be separated
by commas.

Using Trailing Semicolons to Control Output from Multiple Commands

If you want the output from the next PRINT or PRINT USING command to
appear on the same line as the last output, put a semicolon at the end of the list of
items to be printed. This trailing semicolon has the same effect on output as a
trailing semicolon in a PRINT command has.

Exdmples:

BASIC Version 3.8 Commands, Functions, and System Variables 73

Note, however, that while a PRINT command can end in either a trailing
semicolon or a trailing comma, a PRINT USING command can end only in a
trailing semicolon. Also, while PRINT command items can be separated by
either commas or semicolons, only commas are allowed as item separators in a
PRINT USING command. The PRINT USING command allows more control
over output because the format definition determines exactly how the output
looks, so there is no need for semicolons as separators in a PRINT USING

command.

10 INPUT “ITEM”; 1$

20 INPUT "PRICE”; P

25 REM PRINT UP TO 12 LETTERS

30 PRINT USING "###########", 1§,
35 REM PRINT THE PRETAX PRICE
40 PRINT USING "#§## ### ##", P

50 PRINT USING "#####”;, “"TOTAL",

58 REM PRINT THE PRICE PLUS TAX
60 PRINT USING "#$## ### ##"; Px1.06
RUN

ITEM? VIDEO EQUIPMENT

PRICE? 1299.99 '

VIDEO EQUIPM $1,299.99

TOTAL $1,377.99

RUN

ITEM? YACHT

PRICE? 1000000.99
YACHT ook kR KAk K
TOTAL***kk ks

NEW
10 INPUT "TITLE”; A$

20 INPUT "NAME”; B§ .
25 REM CENTER TITLE AND NAME

The # before the $
forces the § to be
printed right next to
the first digit. With-
out the leading #,
blanks appear
between the $ and
any unused digits in
the format.

VIDEO EQUIP-
MENT is longer than
the 12 letters allowed
by the format, so it is
truncated.

On this run, the
number of digits
entered for the price
is greater than the
number accepted by
the format, so the
field is filled with

* symbols. Words
that are too long are
truncated; numbers

30 PRINT USING "=#################",A$ that are too long are
40 PRINT USING "=#################",B$ not printed at all.

RUN
TITLE? TRAINING CATS
NAME? JANE SMITH
TRAINING CATS
JANE SMITH

Examples:

74 The BASIC Language

PUDEF Abbr. pU
PUDEF “one to four characters”

Lets you replace with any other symbol the symbols displayed by subsequent
PRINT USING commands. You can replace blanks, commas, decimal points,
and dollar signs from PRINT USING commands that follow the PUDEF
command. You can issue as many PUDEF commands as necessary to print
formatted data according to your special purposes.

Characters are replaced by their position in the PUDEF command. The
default values for each position are used if you do not specify a different character
in the appropriate position.

Parameter Values Default

First Any character Blank space
Second - Any character Comma
Third Any character Decimal point
Fourth Any character Dollar sign

When you want to replace all the blank spaces in the output printed by a
PRINT USING command, put the replacement character in the first position in
the PUDEF command. When you want to replace commas, put the replacement
character in the second position, and so on. ,

Because the computer recognizes replacement characters by position, you
must type the default values in their positions if the following two conditions are
true: :

® You are not changing the default values.

® They appear in the PUDEF format before the characters you are changing.

If the default values appear after the changes, you can omit the defaults and
just end the command. For example, if you want to leave blanks and commas
when you change decimal points, you must place a blank and a comma in their
positions in the PUDEF command and then type the decimal point replacement
in the third position. '

90 PUDEF“/,” Replaces blanks with slashes and decimal points with
apostrophes. Commas and dollar signs are
_ retained.
75 PUDEF” .bA" Replaces commas with decimal points, decimal
points with lowercase b’s, and dollar signs with A’s.
Blanks are retained.

Examples:

BASIC Version 3.8 Commands, Functions, and 8ystem Variables 78

RCLR Abbr. rC
RCLR (color source)

Finds the number of the color currently assigned to any of the five color
sources:

screen background color

foreground color

0

1

2 multicolor mode extra color 1

3 multicolor mode extra color 2
4

screen border color

Type the number of the color source in parentheses. Only the color number is
found. If you want to find the luminance, use the RLUM function.

PRINT RCLR(1) Prints the number for the current foreground color,
3 which is 3, red.

PRINT RCLR(3) Prints the number for a current multicolor extra

12 color, which is 12, pink.
RDOT Abbr. rD
RDOT (mode)

Finds one of three pieces of information about the condition of the pixel cursor
by typing one of the following values for mode:
0 returns the column coordinate
1 returns the row coordinate
2 returns the color source
The color source tells you with which of the four possible color sources the dot
at the pixel cursor location is drawn:
0 screen background color
1 foreground color
2 multicolor mode extra color 1
3

multicolor mode extra color 2

Drawings cannot be made in the fifth color source, which determines the color

Examnples:

76 The BASIC Language

of the screen border. If you want to find the number of the color in the color
source, use the RCLR function.

READ Abbr. rE
READ input list

Always paired with DATA commands, one of several ways to assign data
values within a program. READ contains alist of variables, and DATA contains
a list of values. READ gets a value from a DATA command for each of its
variables. You cannot input data from the keyboard for READ commands.

The program must contain enough DATA values for the READ variables. If
there are not enough values, the program is aborted and an OUT OF DATA
ERROR message is displayed. However, the total number of DATA values in all
DATA commands is what counts, not the number of values per DATA com-
mand. When one DATA command runs out of values, READ automatically
looks for the next DATA command in the program. DATA commands do not
have to precede READ commands.

You can reREAD DATA values after you use the RESTORE command to
reset the data pointer to the beginning of a DATA command. See RESTORE.

: variable(s)

The READ variables and the value types in the DATA commands must match
(e.g., only text strings can be assigned to text-string variables). Variables must be
separated by commas.

10 DATA 55,44,33

20 READ A,B,C,D The program must have at least
40 PRINT A,B,C,D as many DATA values as READ
RUN variables.

?0UT OF DATA ERROR IN 20

NEW

10 DATA MONDAY, MARCH, 18TH

20 READ A$,B$

30 READ C$X

40 PRINT A$,B$,C$

50 DATA 1985

60 PRINT B$§;X

RUN :
MONDAY MARCH 18TH

MARCH 1985

Example:

BASIC Version 3.8 Commands, Functions, and System Variables (44

70 RESTORE Resets the data pointer to begin-
ning of line 10.

80 READ A Reads first DATA item in line 10.

RUN ' Line 80 reads a text value for a

?TYPE MISMATCH ERROR IN 80 numeric variable.

REM Abbr. none

REM remarks

Contains comments explaining program lines. REMarks make the program
easier to understand when any user reads the program lines. If your program is
longer than just a few lines, you should include REMarks so your program is well
documented. Because REM statements are ignored by the computer, they can
contain anything.

remark

The remark does not need to be enclosed in quotation marks.

Note: In most BASIC lines, shifted characters are allowed only for abbrevia-
tions or in quotes. In a REM statement, shifted characters are fine until the
program is LISTed. The computer treats a shifted character as a BASIC token
and prints, not the character, but the BASIC keyword it corresponds to (see
Appendix B for a token list). This is very annoying. If you want shifted characters
in a REMark, put them inside quotes to avoid this problem.

10 REM PRINT A GREETING WITH THE USER’'S NAME
20 INPUT "WHAT'S YOUR NAME”; N$
30 PRINT “HELLO, ”; N§; ”, WHAT'S NEW?"

RENAME Abbr. reN
RENAME Ddrive, old file name TO new file name, ON Uunit

Replaces the name of a disk file. The file itself is not affected.

: D drive number, “old name” TO “new name”, U unit number

1. Give the number of the drive containing the disk whose file you want to
rename. Drive numbers are either 0 or 1; no other numbers are allowed. The
default value is 0. This parameter is optional. If you are using a single drive, leave
out the drive number.

2. Always list the file’s current name first. Be sure to put it in quotes.

3. TO is part of the RENAME command and must be included.

4. Enclose in quotes the new name you want to give the file.

5. U unit number is an optional parameter. Use it only if you have more than

Examples:

Examples:

78 The BASIC Language

one disk drive connected to your computer and you are using a device other than
unit 8 in the RENAME procedure. You must precede the unit number with U,
and the unit number must be between 8 and 11. You can type ON before U, but
ON is not required.

Note: The drive and unit number parameters and the file names can be
specified with a variable or expression in parentheses.

RENAME D1, "OLD” TO "NEW” Changes the name of file OLD to
NEW.

RENAME “TESTSORT” TO “SORT1” = Changes file TESTSORT to

. SORTI.

RENUMBER ' - Abbr. renU

RENUMBER new start line number, increment, old start line number

Renumbers lines in the current BASIC program. This command can be
executed in immediate mode only; you cannot include it in a program.

Parameter Values Default

New first line number Any legal number* 10

Increment between lines Any legal number* 10

First line number to be Any line number in the First line in the
renumbered program program

*Renumbering must not force line numbers to exceed the highest line number allowed, which is
63999, or strange results will occur.

1. Regardless of what numbering scheme is used in the current program, you
can choose any new first line number. If you omit this parameter and thereby use
the default, you must type a comma in place of the parameter in the command.

2. The increment tells the computer how many numbers to skip between line
numbers. Even if the current line numbers are erratically spaced (e.g., 10, 15, 18,
20, 30, etc.), the RENUMBER command changes all line numbers so they are
evenly spaced (e.g., 10, 20, 30, 40, 50, etc.). If you omit this parameter, type a
comma in its place.

3. Youcan give any number in the program as the first line to be renumbered.
This parameter lets you choose a line other than the first one in the program to
begin renumbering.

RENUMBER 100 Makes 100 the new first line
number. The defaults for incre-
ment and first line number to be
renumbered are accepted.

Parameter:

Example:

BASIC Version 3.8 Commands, Fur:ctions, and System Variables 79

1 REM POLYGON PROGRAM

10 INPUT "HOW MANY SHARES”;T
15 COLOR 1,9,5

20 GRAPHIC 1,1

30 CIRCLE, 160,100,60,50,,,360/T
45 PAINT, 160, 100

RENUMBER 25, 20, 10 Begins at line 10 to renumber in
increments of 20. The first new
line number is 25.

LIST

1 REM POLYGON PROGRAM

25 INPUT "HOW MANY SHARES”;T

45 COLOR 1,9,8

65 GRAPHIC 1,1

85 CIRCLE, 160,100,60,50,,,,360/T

105 PAINT, 160, 100

RESTORE Abbr. reS
RESTORE line number

Resets the data pointer that keeps track of the last item READ in a DATA
command. Once the DATA command is reset, the values in the DATA command
can be assigned again to READ variables. RESTORE does not affect READ
commands or any other commands. You can reset to the beginning of the first
DATA command in the program or to any DATA command in the program.

line number

The line number parameter is optional. If you omit it, the pointer returns to the
first DATA item in the first DATA command. If you specify a line number, the
pointer is reset to the first DATA value in the first DATA command after that
line. Data in previous DATA commands would not be reused.

10 DATA 1,23,3 The RESTORE command in line 50 resets
20 DATA 7,8,9 the DATA pointer to the beginning of line
30 READA,B,C,D,E, F 20. The READ command in line 60

40 PRINTA; B;C; D, E; F reREADs the DATA values in line 20.
50 RESTORE 20
60 READ A, B,C
70 PRINTA; B; C
RUN
1 3 3 7 8 9
7 8 9

Parameters:

Examples:

80 The BASIC Language

RESUME Abbr. resU
RESUME line number
RESUME NEXT

Works with the TRAP command, which catches program errors. Use
RESUME to return to the current program after an error is found by a TRAP
command. RESUME works only in conjunction with TRAP; RESUME cannot
continue program execution unless the program is suspended by a TRAP
command.

line number or NEXT

1. Ifyouissue a RESUME command with no parameter, execution resumes at
the line where the error occurred. The computer will then try to execute this line
again.

2. If you include a line number after the RESUME command, the program
goes to that line and resumes execution there. Any line number that appears in the
program can be used. If you use a line number, do not also type NEXT.

3. If you type NEXT, the program resumes execution at the line after the one
that contained the error. The erroneous line is not reexecuted. If you use the
NEXT parameter, do not also use a line number parameter.

RESUME Q50 Restarts the program at line 250.

RESUME NEXT Resumes execution at the line following the one that
contains the TRAPped error.

RETURN Abbr. reT

Ends a subroutine and returns program execution to the line after the last

| GOSUB command. RETURN is always paired with a GOSUB command. See

GOSUB.
RGR Abbr. rG
RGR (number)

You can find the number of the current graphic mode:

text/ graphic
high-resolution
split-screen high-resolution

multicolor

A W N = O

split-screen multicolor

EXa.mple:

Examples:

BASIC Version 3.5 Commands, Functions, and System Variables 81

The number in parentheses is a dummy argument, which means it does not
mean anything. It is nonetheless required, and you should just type RGR(0).

PRINT RGR(O)
2 The current graphic mode is split-screen high-res.
RIGHTS Abbr. rl

RIGHTS (string, length)

Returns a substring of the designated string with the specified length. RIGHT$
is used frequently to check the end of an input string.

: master string, number of characters to use

1. The master string can be any text string, text-string variable, or string
expression.

2. The RIGHTS substring always begins at the rightmost character in the
master string. You can use as many characters as you want. If you specify more
characters than the string contains, the entire string is returned.

PRINT RIGHT$(”"GRADUATE",3)

ATE
PRINT RIGHT$("RED”,4) The string contains only
RED three characters so only

three are printed.

10 INPUT "WHAT DAY IS IT”; D$
20 INPUT “MORNING OR AFTERNOON”; T$
30 IF RIGHT$(D$,4)=-"SDAY” THEN

PRINT “TUES/THURS SCHEDULE”
RUN
WHAT DAY IS IT? THURSDAY
MORNING OR AFTERNOON? AFTERNOON
TUES/THURS SCHEDULE

RLUM Abbr. rL
RLUM (color source)

Find the number of the color luminance level assigned to one of the five color
sources:

0 screen background color

1 foreground color

Examples:

Example:

82 The BASIC Language

2 multicolor mode extra color 1
3 multicolor mode extra color 2
4 screen border color
To find the luminance level, type the number of the color source in parentheses.
Only the luminance level is found.
The luminance level is stated in a range from 0 (darkest shade) to 7 (lightest

shade). .
If you want to find the color number, use the RCLR function.

PRINT RLUM(1) Prints the luminance level for the current

3 foreground color. The level is found to be 3.
RND Abbr. rN
RND (number)

Finds a random number between 0 and 1. The numbers found are decimal
values. :

A negative number in parentheses reseeds the random number generator With
that value. A zero reseeds the generator from the system clock. A positive number
returns the next number in the current random number sequence. The generator
should be reseeded only once in a program. The numbers in the sequence should
be used thereafter.

Chapter 3 contains more information about mathematical functions, including
RND.

5 X =RND(O) Reseeds the generator.

10 X=INT (9 * RND(1)) +1 Generates a random whole

20 INPUT “GUESS A NUMBER number between 1 and 9.
BETWEEN 1 & 9”;N You can choose to keep

30 IF N <> X THEN PRINT “SORRY”: guessing until you get the right
ELSE PRINT “RIGHT”: GOTO 60 answer.

40 INPUT “GUESS AGAIN”; A$

50 IF A$ = "NO” THEN 60: ELSE
GOTO 20

60 INPUT "PLAY AGAIN”;A$

70 IF A$ = "NO” THEN END: ELSE 10 To play again, goes to get a

new random number.

RUN

GUESS A NUMBER BETWEEN 1 & 9? 8

SORRY

GUESS AGAIN? OK

Parameter:

Examples:

Parameters:

BASIC Version 3.5 Commands, Functions, and 8ystem Variables 83

GUESS A NUMBER BETWEEN 1 & 9? 6
RIGHT
PLAY AGAIN? NO

RUN Abbr. rU
RUN line number

Executes the current BASIC program. Each time you issue a RUN command,
all variables in the program are cleared (numeric variables to zero and string
variables to nulls) because RUN contains an automatic CLR command.

line number

Ordinarily you would use no parameter with the RUN command. But you can
include a line number if you want program executiori to start at a line other than
the first one in the program. You might want to run just part of a program while
you are still working it out.

RUN Executes the current program.

RUN 200 Executes the current program from line 200. Preceding lines
are not executed unless a branching command sends control
back to a line before 200.

SAVE Abbr. sA
SAVE file name, device, end-of-tape flag

Stores a BASIC program on tape or disk. Although SAVE can be used to save
programs to cassette tape or disk, you should use this command to save to
cassette tape and use DSAVE to save to disk.

“file name”, device number, end-of-tape marker

1. Youshould include the name of the file. Enter the name in quotes. You can
use a variable name in place of the file name, but the variable must have a value. It
may be in parentheses (not in quotes). The only time this is likely to be useful is
when you store a program from within itself.

If you omit the file name in a SAVE to tape, the program is stored W1thout a
name, which is never a good idea.

2. Device number can be either 1 (for cassette tape recorder) or the disk drive
number (8-11); no other numbers are allowed. The default value is 1, for cassette
recorder, so you do not need this parameter if you are storing onto a cassette tape
recorder.

3. If you are storing onto tape, you can add a final parameter to specify two

Examples:

84 The BASIC Language

additional functions. If the final parameter is 1, the file cannot be relocated when
subsequently LOADed. If the final parameter is 2, an end-of-tape marker (rather
than an end-of-file) is written after the file on the tape. If the final parameter is 3,
these two features are combined. If it is omitted, or is 0, neither feature is
implemented.

Note: Files that cannot be relocated are LOADed into the memory locations
from which they were SAVEd, regardless of the status of the relocate flag in the
LOAD command. The BASIC pointers at $2D to $32 (45-50) may be adversely
altered by this event.

Saving to Tape

When you issue the SAVE command, the computer displays the message
PRESS PLAY AND RECORD ON TAPE

Press the recorder buttons. Use the VERIFY command to make sure the
program was stored accurately.

Saving to Disk

When you issue the SAVE command, the disk light comes on. Do not remove the
disk until the program is saved and the red light goes off. You can use the
DIRECTORY command to view the disk directory and confirm that the file is
saved. Use the VERIFY command to make sure the program was stored
accurately.

SAVE “CIRCLE4” Stores file CIRCLE4 on tape.

SAVE “SHAPES9”,8 Stores file SHAPES9 on disk.

SAVE "GAME”,1, 2 Stores file GAME on tape with an end-of-tape
marker.

‘SCALE Abbr. scA

SCALE flag

Alters the scaling of the screen dots in graphic modes. Ordinarily the graphic
modes have the following matrix of screen dots that you can control and use in
drawings.

High-resolution modes 320 across and 200 down

Multic’oldr modes 160 across and 200 down

BASIC Version 3.8 Commands, Functions, and System Variables 88

The SCALE command lets you change these values to 1024 logical dots both
across and down in any mode. ,

In particular, this is useful when you are unsure whether a final program will
run in high-resolution or in multicolor mode. If you do all the drawing with
SCALE on, the figures will be the same size in either mode. No coordinate
transformations are required to move between high resolution and multicolor
SCALEd coordinates.

The SCALE command may be executed at any time and remains in effect until
canceled. _

After you turn on scaling, you must adapt the drawing commands to the new
screen coordinates. For example, the center of the high-res screen is no longer
160,100. It is now 512,512.

To calculate SCALEd values from high resolution or multicolor coordinates,
use these formulas:

High-res rows 5.12 * row coordinate
High-res columns 3.2 * column coordinate
Multicolor rows 5.12 * row coordinate
Multicolor columns 6.4 * column coordinate

For example, to get the same circle as drawn without SCALE by
CIRCLE,160,100,60,50, you can use the following lines with SCALE:

5 SCALE 1

10 A=3.2*160: B=5.12 * 100
20 C=3.2*60: D=5.12 *50
30 GRAPHIC 2,1

40 CIRCLE,A,B,C,D

on or off

Turn SCALEing on by using the parameter 1. Turn SCALEing off with the
parameter 0.

SCNCLR Abbr. sC
Erases the screen and returns the cursor to the top of the screen or text area.
Use SCNCLR to clear the screen in any mode, text or graphic.
SCRATCH Abbr. scR
SCRATCH file name, Ddrive, Uunit

Deletes a disk file permanently. References to the file are erased from the disk

86 The BASIC Language

and the file is flagged as SCRATCHed in the disk directory. The number of
blocks occupied by the SCRATCHed file are freed for use.

Once overwritten, SCRATCHed files are lost permanently from the disk.
When you issue a SCRATCH command inimmediate mode, the computer gives
you a chance to double check before the command is executed. The question
ARE YOU SURE ? is di